For block diagram shown below, (mathrm{C}(s) / mathrm{R}(s)) is given by (a) (frac{mathrm{G}_{1} mathrm{G}_{2} mathrm{G}_{3}}{1+mathrm{H}_{2} mathrm{G}_{2} mathrm{G}_{3}+mathrm{H}_{1}

Question:

For block diagram shown below, \(\mathrm{C}(s) / \mathrm{R}(s)\) is given by

image text in transcribed


(a) \(\frac{\mathrm{G}_{1} \mathrm{G}_{2} \mathrm{G}_{3}}{1+\mathrm{H}_{2} \mathrm{G}_{2} \mathrm{G}_{3}+\mathrm{H}_{1} \mathrm{G}_{1} \mathrm{G}_{2}}\)
(b) \(\frac{\mathrm{G}_{1} \mathrm{G}_{2} \mathrm{G}_{3}}{1+\mathrm{G}_{1} \mathrm{G}_{2} \mathrm{G}_{3} \mathrm{H}_{1} \mathrm{H}_{2}}\)
(c) \(\frac{\mathrm{G}_{1} \mathrm{G}_{2} \mathrm{G}_{3}}{1+\mathrm{G}_{1} \mathrm{G}_{2} \mathrm{G}_{3} \mathrm{H}_{1}+\mathrm{G}_{1} \mathrm{G}_{2} \mathrm{G}_{3} \mathrm{H}_{2}}\)
(d) \(\frac{\mathrm{G}_{1} \mathrm{G}_{2} \mathrm{G}_{3}}{1+\mathrm{G}_{1} \mathrm{G}_{2} \mathrm{G}_{3} \mathrm{H}_{1}}\)

Fantastic news! We've Found the answer you've been seeking!

Step by Step Answer:

Related Book For  book-img-for-question
Question Posted: