The (mathrm{G}(s) mathrm{H}(mathrm{s})) product of a feedback system is given by [ mathrm{G}(s) mathrm{H}(mathrm{s})=frac{mathrm{K}}{s(s+1)(s+9)} ] Determine if
Question:
The \(\mathrm{G}(s) \mathrm{H}(\mathrm{s})\) product of a feedback system is given by
\[
\mathrm{G}(s) \mathrm{H}(\mathrm{s})=\frac{\mathrm{K}}{s(s+1)(s+9)}
\]
Determine if the points given below, lie on the locus of characteristic roots. If yes, find the corresponding value of \(\mathrm{K}\).
(a) \(s=-0.5\)
(b) \(s=-2\)
(c) \(s=j 3\)
(d) \(s=-0.5+j 0.5\)
Fantastic news! We've Found the answer you've been seeking!
Step by Step Answer:
Related Book For
Question Posted: