Compute the Fourier transform of each of the sequences in Exercise 2.1. Exercise 2.1. Compute the (z)
Question:
Compute the Fourier transform of each of the sequences in Exercise 2.1.
Exercise 2.1.
Compute the \(z\) transform of the following sequences, indicating their regions of convergence:
(a) \(x(n)=\sin (\omega n+\theta) u(n)\)
(b) \(x(n)=\cos (\omega n) u(n)\)
(c) \(x(n)= \begin{cases}n, & 0 \leq n \leq 4 \\ 0, & n<0 \text { and } n>4\end{cases}\)
(d) \(x(n)=a^{n} u(-n)\)
(e) \(x(n)=\mathrm{e}^{-\alpha n} u(n)\)
(f) \(x(n)=\mathrm{e}^{-\alpha n} \sin (\omega n) u(n)\)
(g) \(x(n)=n^{2} u(n)\).
Fantastic news! We've Found the answer you've been seeking!
Step by Step Answer:
Related Book For
Digital Signal Processing System Analysis And Design
ISBN: 9780521887755
2nd Edition
Authors: Paulo S. R. Diniz, Eduardo A. B. Da Silva , Sergio L. Netto
Question Posted: