We define the even and odd parts of a sequence (x(n), mathcal{E}{x(n)}) and (mathcal{O}{x(n)}) respectively, as [begin{aligned}mathcal{E}{x(n)}
Question:
We define the even and odd parts of a sequence \(x(n), \mathcal{E}\{x(n)\}\) and \(\mathcal{O}\{x(n)\}\) respectively, as
\[\begin{aligned}\mathcal{E}\{x(n)\} & =\frac{x(n)+x(-n)}{2} \\\mathcal{O}\{x(n)\} & =\frac{x(n)-x(-n)}{2}\end{aligned}\]
Show that
\[\sum_{n=-\infty}^{\infty} x^{2}(n)=\sum_{n=-\infty}^{\infty} \mathcal{E}\{x(n)\}^{2}+\sum_{n=-\infty}^{\infty} \mathcal{O}\{x(n)\}^{2}\]
Fantastic news! We've Found the answer you've been seeking!
Step by Step Answer:
Related Book For
Digital Signal Processing System Analysis And Design
ISBN: 9780521887755
2nd Edition
Authors: Paulo S. R. Diniz, Eduardo A. B. Da Silva , Sergio L. Netto
Question Posted: