We define the even and odd parts of a complex sequence (x(n)) as [mathcal{E}{x(n)}=frac{x(n)+x^{*}(-n)}{2} quad text {
Question:
We define the even and odd parts of a complex sequence \(x(n)\) as
\[\mathcal{E}\{x(n)\}=\frac{x(n)+x^{*}(-n)}{2} \quad \text { and } \quad \mathcal{O}\{x(n)\}=\frac{x(n)-x^{*}(-n)}{2}\]
respectively. Show that
\[\mathcal{F}\{\mathcal{E}\{x(n)\}\}=\operatorname{Re}\left\{X\left(\mathrm{e}^{\mathrm{j} \omega}\right)\right\} \quad \text { and } \quad \mathcal{F}\{\mathcal{O}\{x(n)\}\}=\mathrm{j} \operatorname{Im}\left\{X\left(\mathrm{e}^{\mathrm{j} \omega}\right)\right\}\]
where \(X\left(\mathrm{e}^{\mathrm{j} \omega}\right)=\mathcal{F}\{x(n)\}\).
Fantastic news! We've Found the answer you've been seeking!
Step by Step Answer:
Related Book For
Digital Signal Processing System Analysis And Design
ISBN: 9780521887755
2nd Edition
Authors: Paulo S. R. Diniz, Eduardo A. B. Da Silva , Sergio L. Netto
Question Posted: