Question: [10] Show that f(n) = O(f(n)); c O(f(n)) = O(f(n)) if c is a constant; O(f(n) + O(f(n)) = O(f(n)); O(O(f(n))) = O(f(n)); O(f(n))O(g(n))
[10] Show that f(n) = O(f(n)); c · O(f(n)) = O(f(n)) if c is a constant; O(f(n) + O(f(n)) = O(f(n)); O(O(f(n))) = O(f(n));
O(f(n))O(g(n)) = O(f(n)g(n)); O(f(n)g(n)) = f(n)O(g(n)).
Step by Step Solution
There are 3 Steps involved in it
Get step-by-step solutions from verified subject matter experts
