Thisquestionconcernsthealternativestate-spacerepresentationofan AR(p)model thatarisesasaspecialcaseofthestate-spacerepresenta tionofARMA(pq)modelswhenq=0.This isalsoeasilyseentobe de nedbyadirectlineartransformationofstatevectorsinthestandard representation,asfollows. Beginwiththestandardstate-spacerepresentationoftheAR(p)model; thestatevector isxt=(yt yt 1 yt p+1) andthemodel equations
Question:
Thisquestionconcernsthealternativestate-spacerepresentationofan AR(p)model thatarisesasaspecialcaseofthestate-spacerepresenta tionofARMA(pq)modelswhenq=0.This isalsoeasilyseentobe de nedbyadirectlineartransformationofstatevectorsinthestandard representation,asfollows.
Beginwiththestandardstate-spacerepresentationoftheAR(p)model;
thestatevector isxt=(yt yt 1 yt p+1) andthemodel equations areyt=Fxtandxt=Gxt 1+Ftwhere F=
1 0
0 0
and G=
1 2 p 1 p 1 0 0 0 0 0 0 0 0 0 1 0 withARparameters =( 1 p) andinnovations t N(0v)
De nethep psymmetricmatrixAby A=
1 0 0 0 0 0 0 2 3 4 p 1 p 0 3 4 5 p 0 0 p 1 p 0 0 0 p 0 0 0
(a)VerifythatthematrixproductAGisgivenby AG=
1 2 3 4 p 1 p 2 3 4 5 p 0 3 4 5 5 0 0 p 1 p 0 0 0 p 0 0 0 0 notingthatthisisalsosymmetric.
(b) Showordeducethat:
i. ForaproperAR(p)model inwhich p=0 thenA=0sothat Aisnonsingular.
ii.AGA1=G.
iii.AF=Fand,asaresult,F=FA1 (c)Hence showthatanequivalent state-spaceAR(p) formisgivenby yt=Fzt andzt=Gzt 1+Ft basedonanewp 1statevector zt=AxtandwherethestateevolutionmatrixisG i.e., G= 1 1 0 0 2 0 1 0 p 1 0 0 1 p 0 0 0 (d)What is the interpretationof theelementsof thetransformedstate vectorzt?
Step by Step Answer:
Time Series Modeling Computation And Inference
ISBN: 9781498747028
2nd Edition
Authors: Raquel Prado, Marco A. R. Ferreira, Mike West