For each of the following, calculate the (F)-ratios ((F)) for the two-way ANOVA, create an ANOVA summary

Question:

For each of the following, calculate the \(F\)-ratios \((F)\) for the two-way ANOVA, create an ANOVA summary table, and calculate measures of effect size \(\left(R^{2}\right)\).

a. \(S S_{\mathrm{A}}=16.50, d f_{\mathrm{A}}=1, S S_{\mathrm{B}}=9.75, d f_{\mathrm{B}}=1, S S_{\mathrm{A} \times \mathrm{B}}=31.26, d f_{\mathrm{A} \times \mathrm{B}}=1, S S_{\mathrm{WG}}=337.82, d f_{\mathrm{WG}}=56\)

b. \(S S_{\mathrm{A}}=174.37, d f_{\mathrm{A}}=2, S S_{\mathrm{B}}=387.02, d f_{\mathrm{B}}=1, S S_{\mathrm{A} \times \mathrm{B}}=250.87, d f_{\mathrm{A} \times \mathrm{B}}=2, S S_{\mathrm{WG}}=2011.65, d f_{\mathrm{WG}}=54\)

c. \(S S_{\mathrm{A}}=21.90, d f_{\mathrm{A}}=2, S S_{\mathrm{B}}=13.29, d f_{\mathrm{B}}=2, S S_{\mathrm{A} \times \mathrm{B}}=36.09, d f_{\mathrm{A} \times \mathrm{B}}=4, S S_{\mathrm{WG}}=143.12, d f_{\mathrm{WG}}=63\)

d. \(S S_{\mathrm{A}}=125.87, d f_{\mathrm{A}}=3, S S_{\mathrm{B}}=176.31, d f_{\mathrm{B}}=3, S S_{\mathrm{A} \times \mathrm{B}}=359.00, d f_{\mathrm{A} \times \mathrm{B}}=9, S S_{\mathrm{WG}}=812.59, d f_{\mathrm{WG}}=48\)

Fantastic news! We've Found the answer you've been seeking!

Step by Step Answer:

Question Posted: