For each of the following, calculate the (F)-ratios ((F)) for the two-way ANOVA, create an ANOVA summary

Question:

For each of the following, calculate the \(F\)-ratios \((F)\) for the two-way ANOVA, create an ANOVA summary table, and calculate measures of effect size \(\left(R^{2}\right)\).

a. \(S S_{\mathrm{A}}=12.00, d f_{\mathrm{A}}=1, S S_{\mathrm{B}}=24.00, d f_{\mathrm{B}}=1, S S_{\mathrm{A} \times \mathrm{B}}=8.00, d f_{\mathrm{A} \times \mathrm{B}}=1, S S_{\mathrm{WG}}=64.00, d f_{\mathrm{WG}}=16\)

b. \(S S_{\mathrm{A}}=3.91, d f_{\mathrm{A}}=1, S S_{\mathrm{B}}=5.64, d f_{\mathrm{B}}=1, S S_{\mathrm{A} \times \mathrm{B}}=3.12, d f_{\mathrm{A} \times \mathrm{B}}=1, S S_{\mathrm{WG}}=67.04, d f_{\mathrm{WG}}=92\)

c. \(S S_{\mathrm{A}}=4.23, d f_{\mathrm{A}}=1, S S_{\mathrm{B}}=3.72, d f_{\mathrm{B}}=2, S S_{\mathrm{A} \times \mathrm{B}}=1.81, d f_{\mathrm{A} \times \mathrm{B}}=2, S S_{\mathrm{WG}}=8.62, d f_{\mathrm{WG}}=18\)

d. \(S S_{\mathrm{A}}=52.78, d f_{\mathrm{A}}=3, S S_{\mathrm{B}}=18.58, d f_{\mathrm{B}}=1, S S_{\mathrm{A} \times \mathrm{B}}=78.06, d f_{\mathrm{A} \times \mathrm{B}}=3, S S_{\mathrm{WG}}=297.21, d f_{\mathrm{WG}}=32\)

e. \(S S_{\mathrm{A}}=78.43, d f_{\mathrm{A}}=1, S S_{\mathrm{B}}=61.90, d f_{\mathrm{B}}=3, S S_{\mathrm{A} \times \mathrm{B}}=27.39, d f_{\mathrm{A} \times \mathrm{B}}=3, S S_{\mathrm{WG}}=695.32, d f_{\mathrm{WG}}=56\)

Fantastic news! We've Found the answer you've been seeking!

Step by Step Answer:

Question Posted: