4.9 The Application Indifference Curves Between Food and Clothing postulates that minimum levels of food and clothing

Question:

4.9 The Application “Indifference Curves Between Food and Clothing” postulates that minimum levels of food and clothing are necessary to support life. Suppose that the amount of food one has is F, the minimum level to sustain life is F, the amount of clothing one has is C, and the minimum necessary is C. We can then modify the Cobb-Douglas utility function to reflect these minimum levels: U(C, F) = (C - C)

a

(F - F)

1 - a

, where C Ú C and F Ú F. Using the approach similar to that in Solved Problem 3.6, derive the optimal amounts of food and clothing as a function of prices and a person’s income. To do so, introduce the idea of extra income, Y*, which is the income remaining after paying for the minimum levels of food and clothing: Y* = Y - pCC - pFF. Show that the optimal quantity of clothing is C = C + aY*/pC and that the optimal quantity of food is F = F + (1 - a)Y*/pF.

Derive formulas for the share of income devoted to each good. M

Fantastic news! We've Found the answer you've been seeking!

Step by Step Answer:

Related Book For  book-img-for-question
Question Posted: