Write down the bond pricing PDE for the function [F(t, x)=mathbb{E}^{*}left[mathrm{e}^{-int_{t}^{T} r_{s} d s} mid r_{t}=x ight]]
Question:
Write down the bond pricing PDE for the function
\[F(t, x)=\mathbb{E}^{*}\left[\mathrm{e}^{-\int_{t}^{T} r_{s} d s} \mid r_{t}=x\right]\]
and show that in case \(\alpha=0\) the corresponding bond price \(P(t, T)\) equals
\[P(t, T)=\mathrm{e}^{-r_{t} B(T-t)}, \quad 0 \leqslant t \leqslant T\]
where
\[B(x):=\frac{2\left(\mathrm{e}^{\gamma x}-1\right)}{2 \gamma+(\beta+\gamma)\left(\mathrm{e}^{\gamma x}-1\right)}, \quad x \in \mathbb{R}\]
with \(\gamma=\sqrt{\beta^{2}+2 \sigma^{2}}\).
Fantastic news! We've Found the answer you've been seeking!
Step by Step Answer:
Related Book For
Introduction To Stochastic Finance With Market Examples
ISBN: 9781032288277
2nd Edition
Authors: Nicolas Privault
Question Posted: