The sine function can be represented as (sin (theta)=theta-frac{theta^{3}}{3 !}+frac{theta^{5}}{5 !}-frac{theta^{7}}{7 !}+frac{theta^{9}}{9 !} cdots). Plot the percent
Question:
The sine function can be represented as \(\sin (\theta)=\theta-\frac{\theta^{3}}{3 !}+\frac{\theta^{5}}{5 !}-\frac{\theta^{7}}{7 !}+\frac{\theta^{9}}{9 !} \cdots\). Plot the percent error between \(\sin (\theta)\) and:
- \(\theta(\mathrm{rad})\)
- \(\theta-\frac{\theta^{3}}{3 !}(\mathrm{rad})\)
- \(\theta-\frac{\theta^{3}}{3 !}+\frac{\theta^{5}}{5 !}(\mathrm{rad})\)
for a range of \(\theta\) values from \(0.001 \mathrm{rad}\) to \(\frac{\pi}{2} \mathrm{rad}\) in steps of \(0.001 \mathrm{rad}\). Calculate the percent error using \(\left(\frac{\theta-\sin (\theta)}{\sin (\theta)}\right) \cdot 100\) for the \(\theta\) approximation, \(\left(\frac{\left(\theta-\frac{\theta^{3}}{3}\right)-\sin (\theta)}{\sin (\theta)}\right) \cdot 100\) for the \(\theta-\frac{\theta^{3}}{3 !}\) approximation, and so on. How do these results relate to the small angle approximation?
Step by Step Answer:
Mechanical Vibrations Modeling And Measurement
ISBN: 119669
1st Edition
Authors: Tony L. Schmitz , K. Scott Smith