The velocity field in the region shown is given by (vec{V}=(a hat{j}+b y hat{k})) where (a=10 mathrm{~m}
Question:
The velocity field in the region shown is given by \(\vec{V}=(a \hat{j}+b y \hat{k})\) where \(a=10 \mathrm{~m} / \mathrm{s}\) and \(b=5 \mathrm{~s}^{-1}\). For the \(1 \mathrm{~m} \times 1 \mathrm{~m}\) triangular control volume (depth \(w=1 \mathrm{~m}\) perpendicular to the diagram), an element of area (1) may be represented by \(d \overrightarrow{A_{1}}=w d z \hat{j}-w d y \hat{k}\) and an element of area (2) by \(d \overrightarrow{A_{2}}=-w d y \hat{k}\).
(a) Find an expression for \(\vec{V} \cdot d A_{1}\).
(b) Evaluate \(\int_{A_{1}} \vec{V} \cdot d A_{1}\).
(c) Find an expression for \(\vec{V} \cdot d A_{2}\).
(d) Find an expression for \(\vec{V}\left(\vec{V} \cdot d A_{2}\right)\).
(e) Evaluate \(\int_{A_{2}} \vec{V}\left(\vec{V} \cdot d A_{2}\right)\).
Step by Step Answer:
Fox And McDonald's Introduction To Fluid Mechanics
ISBN: 9781118912652
9th Edition
Authors: Philip J. Pritchard, John W. Mitchell