Let for r = 1, 2,, ????(r) = E[X(X 1) (X r
Question:
Let for r = 1, 2,…,
????(r) = E[X(X − 1) · · · (X − r + 1)]
be the factorial moments of the random variable X, and
????r = [E(X − ????)r], ????′
r = E(Xr), r = 1, 2,…, be the moments of X around its mean, ???? = E(X) (central moments), and around zero, respectively.
Using properties of expectations, show that the following are true:
(i) ????′
1 = ????(1), ????1 = 0;
(ii) ????′
2 = ????(2) + ????(1), ????2 = ????′
2 − (????′
1 )2;
(iii) ????′
3 = ????(3) + 3????(2) + ????(1), ????3 = ????′
3 − 3????′
2????′
1 + 2(????′
1 )3;
(iv) ????′
4 = ????(4) + 6????(3) + 7????(2) + ????(1), ????4 = ????′
4 − 4????′
3????′
1 + 6????′
2(????′
1 )2 − 3(????′
1)4.
Verify also the truth of the identity Var(X) = ????(2) + ???? − ????2.
Step by Step Answer:
Introduction To Probability Volume 2
ISBN: 9781118123331
1st Edition
Authors: Narayanaswamy Balakrishnan, Markos V. Koutras, Konstadinos G. Politis