Consider the case where (left{A_{n}ight}_{n=1}^{infty}) is a sequence of independent events that all have the same probability

Question:

Consider the case where \(\left\{A_{n}ight\}_{n=1}^{\infty}\) is a sequence of independent events that all have the same probability \(p \in(0,1)\). Prove that

\[P\left(\limsup _{n ightarrow \infty} A_{n}ight)=1,\]

and interpret this result in terms of how often the event occurs.

Fantastic news! We've Found the answer you've been seeking!

Step by Step Answer:

Related Book For  book-img-for-question
Question Posted: