Let (left{x_{n}ight}_{n=1}^{infty}) be a sequence of real numbers defined by [x_{n}=left{begin{array}{rl}-1 & n=1+3(k-1), k in mathbb{N} 0

Question:

Let \(\left\{x_{n}ight\}_{n=1}^{\infty}\) be a sequence of real numbers defined by

\[x_{n}=\left\{\begin{array}{rl}-1 & n=1+3(k-1), k \in \mathbb{N} \\0 & n=2+3(k-1), k \in \mathbb{N} \\1 & n=3+3(k-1), k \in \mathbb{N}\end{array}ight. \]

Compute

\[\liminf _{n ightarrow \infty} x_{n}\]

and

\[\limsup _{n ightarrow \infty} x_{n}\]

Determine if the limit of \(x_{n}\) as \(n ightarrow \infty\) exists.

Fantastic news! We've Found the answer you've been seeking!

Step by Step Answer:

Related Book For  book-img-for-question
Question Posted: