Consider the model [y_{i t}=beta_{1 i}+beta_{2} x_{i t}+e_{i t}] a. Show that the fixed effects estimator for
Question:
Consider the model
\[y_{i t}=\beta_{1 i}+\beta_{2} x_{i t}+e_{i t}\]
a. Show that the fixed effects estimator for \(\beta_{2}\) can be written as
\[\hat{\beta}_{2, F E}=\frac{\sum_{i=1}^{N} \sum_{t=1}^{T}\left(x_{i t}-\bar{x}_{i}\right)\left(y_{i t}-\bar{y}_{i}\right)}{\sum_{i=1}^{N} \sum_{t=1}^{T}\left(x_{i t}-\bar{x}_{i}\right)^{2}}\]
b. Show that the random effects estimator for \(\beta_{2}\) can be written as
\[\hat{\beta}_{2, R E}=\frac{\sum_{i=1}^{N} \sum_{t=1}^{T}\left[x_{i t}-\hat{\alpha}\left(\bar{x}_{i}-\overline{\bar{x}}\right)-\overline{\bar{x}}\right]\left[y_{i t}-\hat{\alpha}\left(\bar{y}_{i}-\overline{\bar{y}}\right)-\overline{\bar{y}}\right]}{\sum_{i=1}^{N} \sum_{t=1}^{T}\left[x_{i t}-\hat{\alpha}\left(\bar{x}_{i}-\overline{\bar{x}}\right)-\overline{\bar{x}}\right]^{2}}\]
where \(\overline{\bar{y}}\) and \(\overline{\bar{x}}\) are the overall means.
c. Write down an expression for the pooled least squares estimator of \(\beta_{2}\). Discuss the differences between the three estimators.
Step by Step Answer:
Principles Of Econometrics
ISBN: 9781118452271
5th Edition
Authors: R Carter Hill, William E Griffiths, Guay C Lim