Let S be a maximal linearly independent subset of a vector space V. That is, S has
Question:
Let S be a maximal linearly independent subset of a vector space V. That is, S has the property that if a vector not in S is adjoined to S, then the new set will no longer be linearly independent. Prove that S must be a basis for V.
Fantastic news! We've Found the answer you've been seeking!
Step by Step Answer:
Related Book For
Linear Algebra And Its Applications
ISBN: 9781292351216
6th Global Edition
Authors: David Lay, Steven Lay, Judi McDonald
Question Posted: