Let S be a maximal linearly independent subset of a vector space V. That is, S has

Question:

Let S be a maximal linearly independent subset of a vector space V. That is, S has the property that if a vector not in S is adjoined to S, then the new set will no longer be linearly independent. Prove that S must be a basis for V.

Fantastic news! We've Found the answer you've been seeking!

Step by Step Answer:

Related Book For  book-img-for-question

Linear Algebra And Its Applications

ISBN: 9781292351216

6th Global Edition

Authors: David Lay, Steven Lay, Judi McDonald

Question Posted: