Equivelent length (l_{e}) of a stepped shaft is (a) (l_{e}=l_{1}+left(frac{d_{1}}{d_{2}} ight)^{4} l_{2}+left(frac{d_{1}}{d_{3}} ight)^{4} l_{3}+cdots) (b) (l_{e}=l_{1}+left(frac{d_{1}}{d_{2}} ight)^{3}
Question:
Equivelent length \(l_{e}\) of a stepped shaft is
(a) \(l_{e}=l_{1}+\left(\frac{d_{1}}{d_{2}}\right)^{4} l_{2}+\left(\frac{d_{1}}{d_{3}}\right)^{4} l_{3}+\cdots\)
(b) \(l_{e}=l_{1}+\left(\frac{d_{1}}{d_{2}}\right)^{3} l_{2}+\left(\frac{d_{1}}{d_{3}}\right)^{3} l_{3}+\cdots\)
(c) \(l_{e}=l_{1}+\left(\frac{d_{1}}{d_{2}}\right)^{2} l_{2}+\left(\frac{d_{1}}{d_{3}}\right)^{2} l_{3}+\cdots\)
(d) \(l_{e}=l_{1}+\left(\frac{d_{1}}{d_{2}}\right) l_{2}+\left(\frac{d_{1}}{d_{3}}\right) l_{3}+\ldots\)
Fantastic news! We've Found the answer you've been seeking!
Step by Step Answer:
Related Book For
Question Posted: