For cylindrical coordinates, [begin{align*} & x=r cos theta & y=r sin theta & z=z tag{9.128}

Question:

For cylindrical coordinates,

\[\begin{align*} & x=r \cos \theta \\ & y=r \sin \theta \\ & z=z \tag{9.128} \end{align*}\]

find the scale factors and derive the following expressions:

\[\begin{gather*} abla f=\frac{\partial f}{\partial r} \hat{\mathbf{e}}_{r}+\frac{1}{r} \frac{\partial f}{\partial \theta} \hat{\mathbf{e}}_{\theta}+\frac{\partial f}{\partial z} \hat{\mathbf{e}}_{z} \tag{9.129}\\ abla \cdot \mathbf{F}=\frac{1}{r} \frac{\partial\left(r F_{r}\right)}{\partial r}+\frac{1}{r} \frac{\partial F_{\theta}}{\partial \theta}+\frac{\partial F_{z}}{\partial z} \tag{9.130}\\ abla \times \mathbf{F}=\left(\frac{1}{r} \frac{\partial F_{z}}{\partial \theta}-\frac{\partial F_{\theta}}{\partial z}\right) \hat{\mathbf{e}}_{r}+\left(\frac{\partial F_{r}}{\partial z}-\frac{\partial F_{z}}{\partial r}\right) \hat{\mathbf{e}}_{\theta}+\frac{1}{r}\left(\frac{\partial\left(r F_{\theta}\right)}{\partial r}-\frac{\partial F_{r}}{\partial \theta}\right) \hat{\mathbf{e}}_{z} \tag{9.131}\\ abla^{2} f=\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial f}{\partial r}\right)+\frac{1}{r^{2}} \frac{\partial^{2} f}{\partial \theta^{2}}+\frac{\partial^{2} f}{\partial z^{2}} \tag{9.132} \end{gather*}\]

image text in transcribed

Fantastic news! We've Found the answer you've been seeking!

Step by Step Answer:

Related Book For  book-img-for-question
Question Posted: