Prove the following vector identities: a. ((mathbf{a} times mathbf{b}) cdot(mathbf{c} times mathbf{d})=(mathbf{a} cdot mathbf{c})(mathbf{b} cdot mathbf{d})-(mathbf{a} cdot
Question:
Prove the following vector identities:
a. \((\mathbf{a} \times \mathbf{b}) \cdot(\mathbf{c} \times \mathbf{d})=(\mathbf{a} \cdot \mathbf{c})(\mathbf{b} \cdot \mathbf{d})-(\mathbf{a} \cdot \mathbf{d})(\mathbf{b} \cdot \mathbf{c})\).
b. \((\mathbf{a} \times \mathbf{b}) \times(\mathbf{c} \times \mathbf{d})=(\mathbf{a} \cdot \mathbf{b} \times \mathbf{d}) \mathbf{c}-(\mathbf{a} \cdot \mathbf{b} \times \mathbf{c}) \mathbf{d}\).
Fantastic news! We've Found the answer you've been seeking!
Step by Step Answer:
Related Book For
A Course In Mathematical Methods For Physicists
ISBN: 9781138442085
1st Edition
Authors: Russell L Herman
Question Posted: