Prove the following vector identities: a. ((mathbf{a} times mathbf{b}) cdot(mathbf{c} times mathbf{d})=(mathbf{a} cdot mathbf{c})(mathbf{b} cdot mathbf{d})-(mathbf{a} cdot

Question:

Prove the following vector identities:

a. \((\mathbf{a} \times \mathbf{b}) \cdot(\mathbf{c} \times \mathbf{d})=(\mathbf{a} \cdot \mathbf{c})(\mathbf{b} \cdot \mathbf{d})-(\mathbf{a} \cdot \mathbf{d})(\mathbf{b} \cdot \mathbf{c})\).

b. \((\mathbf{a} \times \mathbf{b}) \times(\mathbf{c} \times \mathbf{d})=(\mathbf{a} \cdot \mathbf{b} \times \mathbf{d}) \mathbf{c}-(\mathbf{a} \cdot \mathbf{b} \times \mathbf{c}) \mathbf{d}\).

Fantastic news! We've Found the answer you've been seeking!

Step by Step Answer:

Related Book For  book-img-for-question
Question Posted: