3D polar coordinates. Define (Phi:[0, infty) times[0,2 pi) times[-pi / 2, pi / 2) ightarrow mathbb{R}^{3}) by
Question:
3D polar coordinates. Define \(\Phi:[0, \infty) \times[0,2 \pi) \times[-\pi / 2, \pi / 2) ightarrow \mathbb{R}^{3}\) by
\[\Phi(r, \theta, \omega):=(r \cos \theta \cos \omega, r \sin \theta \cos \omega, r \sin \omega)\]
Show that \(|\operatorname{det} D \Phi(r, \theta, \omega)|=r^{2} \cos \omega\) and find the integral formula for the coordinate change from Cartesian to polar coordinates \((x, y, z) ightsquigarrow(r, \theta, \omega)\).
Fantastic news! We've Found the answer you've been seeking!
Step by Step Answer:
Related Book For
Question Posted: