Let (mathcal{H}) be a real Hilbert space. (i) Show that [|h|=sup _{g eq 0} frac{|langle g, hangle|}{|g|}=sup
Question:
Let \(\mathcal{H}\) be a real Hilbert space.
(i) Show that
\[\|h\|=\sup _{g eq 0} \frac{|\langle g, hangle|}{\|g\|}=\sup _{\|g\| \leqslant 1}|\langle g, hangle|=\sup _{\|g\|=1}|\langle g, hangle|\]
(ii) Can we replace in (i) \(|\langle\cdot, \cdotangle|\) by \(\langle\cdot, \cdotangle\) ?
(iii) Is it enough to take \(g\) in (i) from a dense subset rather than from \(\mathcal{H}\) (resp. \(\overline{B_{1}(0)}\) or \(\{k \in \mathcal{H}:\|k\|=1\}\) )?
Fantastic news! We've Found the answer you've been seeking!
Step by Step Answer:
Related Book For
Question Posted: