Let ((X, mathscr{A})) be a measurable space. Show that there cannot be a (sigma)-algebra (mathscr{A}) which contains

Question:

Let \((X, \mathscr{A})\) be a measurable space. Show that there cannot be a \(\sigma\)-algebra \(\mathscr{A}\) which contains countably infinitely many sets.

[recall that \(A \in \mathscr{A}\) is an atom if \(A\) contains no proper subset \(\emptyset eq B \in \mathscr{A}\). Show that \(\# \mathscr{A}=\# \mathbb{N}\) implies that \(\mathscr{A}\) has countably infinitely many atoms. This will lead to a contradiction.]

Fantastic news! We've Found the answer you've been seeking!

Step by Step Answer:

Related Book For  book-img-for-question
Question Posted: