Let ((X, mathscr{A}, mu)) be a general measure space and (1 leqslant p leqslant r leqslant q
Question:
Let \((X, \mathscr{A}, \mu)\) be a general measure space and \(1 \leqslant p \leqslant r \leqslant q \leqslant \infty\).
Prove that \(\mathcal{L}^{p}(\mu) \cap \mathcal{L}^{q}(\mu) \subset \mathcal{L}^{r}(\mu)\) by establishing the inequality
\[\|u\|_{r} \leqslant\|u\|_{p}^{\lambda} \cdot\|u\|_{q}^{1-\lambda} \quad \forall u \in \mathcal{L}^{p}(\mu) \cap \mathcal{L}^{q}(\mu),\]
with \(\lambda=\left(\frac{1}{r}-\frac{1}{q}ight) /\left(\frac{1}{p}-\frac{1}{q}ight)\).
[use Hölder's inequality.]
Fantastic news! We've Found the answer you've been seeking!
Step by Step Answer:
Related Book For
Question Posted: