For the Hausman test given in Section 8.4.1 let (mathrm{V}_{11}=mathrm{V}[widehat{theta}], mathrm{V}_{22}=mathrm{V}[tilde{theta}]), and (mathrm{V}_{12}=operatorname{Cov}[widehat{boldsymbol{theta}}, tilde{boldsymbol{theta}}]). (a) Show that

Question:

For the Hausman test given in Section 8.4.1 let \(\mathrm{V}_{11}=\mathrm{V}[\widehat{\theta}], \mathrm{V}_{22}=\mathrm{V}[\tilde{\theta}]\), and \(\mathrm{V}_{12}=\operatorname{Cov}[\widehat{\boldsymbol{\theta}}, \tilde{\boldsymbol{\theta}}]\).

(a) Show that the estimator \(\bar{\theta}=\widehat{\boldsymbol{\theta}}+\left[\mathrm{V}_{11}+\mathrm{V}_{22}-2 \mathrm{~V}_{12}\right]^{-1}(\tilde{\boldsymbol{\theta}}, \widehat{\boldsymbol{\theta}})\) has asymptotic variance matrix \(V[\bar{\theta}]=\mathrm{V}_{11}-\left[\mathrm{V}_{11}-\mathrm{V}_{12}\right]\left[\mathrm{V}_{11}+\mathrm{V}_{22}-2 \mathrm{~V}_{12}\right]^{-1}\left[\mathrm{~V}_{11}-\mathrm{V}_{12}\right]\).

(b) Hence show that \(V[\bar{\theta}]\) is less than \(V[\widehat{\theta}]\) in the matrix sense unless \(\operatorname{Cov}[\hat{\theta}, \widetilde{\theta}]=\) \(\mathrm{V}[\widehat{\theta}]\).

(c) Now suppose that \(\widehat{\theta}\) is fully efficient. Can \(V[\bar{\theta}]\) be less than \(\mathrm{V}[\widehat{\theta}]\) ? What do you conclude?

image text in transcribed

Fantastic news! We've Found the answer you've been seeking!

Step by Step Answer:

Related Book For  book-img-for-question

Microeconometrics Methods And Applications

ISBN: 9780521848053

1st Edition

Authors: A.Colin Cameron, Pravin K. Trivedi

Question Posted: