The off-gas from a reactor in a process plant in the heart of Freedonia has been condensing
Question:
The off-gas from a reactor in a process plant in the heart of Freedonia has been condensing and plugging up the vent line, causing a dangerous pressure buildup in the reactor. Plans have been made to send the gas directly from the reactor into a cooling condenser in which the gas and liquid condensate will be brought to 25°C.
(a) You have been called in as a consultant to aid in the design of this unit. Unfortunately, the chief (and only) plant engineer has disappeared and nobody else in the plant can tell you what the offgas is (or what anything else is, for that matter). However, a job is a job, and you set out to do what you can. You find an elemental analysis in the engineer’s notebook indicating that the gas formula is C5H12O. On another page of the notebook, the off-gas flow rate is given as 235 m3/h at 116°C and 1 atm. You take a sample of the gas and cool it to 25°C, where it proves to be a solid. You then heat the solidified sample at 1 atm and note that it melts at 52°C and boils at 113°C. Finally, you make several assumptions and estimate the heat removal rate in kW required to bring the off-gas from 116°C to 25°C. What is your result?
(b) If you had the right equipment, what might you have done to get a better estimate of the cooling rate?
Step by Step Answer:
Elementary Principles of Chemical Processes
ISBN: 978-1119498759
4th edition
Authors: Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard