You are running from pirates on a tropical island somewhere in the Caribbean. You have somehow become

Question:

You are running from pirates on a tropical island somewhere in the Caribbean. You have somehow become separated from the rest of your group and now find yourself on the edge of a cliff with your pursuers less than 10 minutes behind you. According to a sign posted on the guardrail at the cliff ’s edge, the drop to the beach below is h = 140 feet. Your team members (waiting for you on the beach, near your boat) have a rope, but there is no time for anyone to climb the cliff to save you. You break into a deserted cabin nearby, and rummage around for a rope. Instead, you find a brand new, still-in-package, bungee cord that must have been intended for tourists jumping from a nearby bridge. You figure you might be able to attach it to the guardrail and jump to the beach, letting go at the bottom before it reverses your motion. You read the bungee cord specifications on the package: the total length of the cord is L0 = 100 m, the maximum elastic deformation is 200% (i.e., it can safely triple its length), and the elastic constant is k = 75.0 N/m.

(a) If you weigh 170 lb, how far is the bungee cord designed to let you fall before it stops you and reverses your direction? Will this aff ord you a safe landing?

(b) You realize that you don’t have to hang from the very end of the bungee, but rather from some point in the middle. How far from the attached end should you grasp the unstretched bungee cord so that you land softly on the beach? Will you be able to perform the jump and stay under the elastic deformation limit?

Fantastic news! We've Found the answer you've been seeking!

Step by Step Answer:

Related Book For  book-img-for-question

Physics

ISBN: 9781119539636

11th Edition

Authors: John D. Cutnell, Kenneth W. Johnson, David Young, Shane Stadler

Question Posted: