=+(iii) Use Fatous lemma to show that limn n i=1 |Xi| ai < a.s. and
Question:
=+(iii) Use Fatou’s lemma to show that limn→∞
τ
∧n i=1
|Xi|
ai
< ∞ a.s.
and hence ∞
i=1 |Xi|/ai < ∞ a.s. on {τ = ∞} = {
∞
i=1 E(|Xi|
p|Fi−1)/ap i ≤
B} for any B > 0.
(iv) Conclude that ∞
i=1 Xi/ai converges a.s. on
∞
i=1 E(|Xi|
p|Fi−1)/ap i < ∞
.
Fantastic news! We've Found the answer you've been seeking!
Step by Step Answer:
Related Book For
Question Posted: