=+(iii) Use Fatous lemma to show that limn n i=1 |Xi| ai < a.s. and

Question:

=+(iii) Use Fatou’s lemma to show that limn→∞

τ

∧n i=1

|Xi|

ai

< ∞ a.s.

and hence ∞

i=1 |Xi|/ai < ∞ a.s. on {τ = ∞} = {

∞

i=1 E(|Xi|

p|Fi−1)/ap i ≤

B} for any B > 0.

(iv) Conclude that ∞

i=1 Xi/ai converges a.s. on

∞

i=1 E(|Xi|

p|Fi−1)/ap i < ∞



.

Fantastic news! We've Found the answer you've been seeking!

Step by Step Answer:

Related Book For  book-img-for-question
Question Posted: