4.9. Let r be the first time that a standard Brownian motion B(t) starting from B(0) =...
Question:
4.9. Let r be the first time that a standard Brownian motion B(t) starting from B(0) = x > 0 reaches zero. Let A be a positive constant. Show that w(x) = E[e-ATIB(0) = x] = e-'-21*.
Hint: Develop an appropriate differential equation by instituting an infinitesimal first step analysis according to w(x) = E[E{e-ATjB(Ot)}!B(0) = x] = E[e-A°'w(x + AB)].
Fantastic news! We've Found the answer you've been seeking!
Step by Step Answer:
Related Book For
An Introduction To Stochastic Modeling
ISBN: 9780126848878
3rd Edition
Authors: Samuel Karlin, Howard M. Taylor
Question Posted: