Let (left(B_{t}, mathscr{F}_{t}ight)_{t geqslant 0}) be a (mathrm{BM}^{1}) and set (M_{t}:=sup _{s leqslant t} B_{s}) and (I_{t}=int_{0}^{t}
Question:
Let \(\left(B_{t}, \mathscr{F}_{t}ight)_{t \geqslant 0}\) be a \(\mathrm{BM}^{1}\) and set \(M_{t}:=\sup _{s \leqslant t} B_{s}\) and \(I_{t}=\int_{0}^{t} B_{s} d s\).
a) Show that the two-dimensional process \(\left(B_{t}, M_{t}ight)_{t \geqslant 0}\) is a Markov process for \(\left(\mathscr{F}_{t}ight)_{t \geqslant 0}\).
b) Show that the two-dimensional process \(\left(B_{t}, I_{t}ight)_{t \geqslant 0}\) is a Markov process for \(\left(\mathscr{F}_{t}ight)_{t \geqslant 0}\).
c) Are \(\left(M_{t}ight)_{t \geqslant 0}\) and \(\left(I_{t}ight)_{t \geqslant 0}\) Markov processes for \(\left(\mathscr{F}_{t}ight)_{t \geqslant 0}\) ?
Fantastic news! We've Found the answer you've been seeking!
Step by Step Answer:
Related Book For
Brownian Motion A Guide To Random Processes And Stochastic Calculus De Gruyter Textbook
ISBN: 9783110741254
3rd Edition
Authors: René L. Schilling, Björn Böttcher
Question Posted: