Answered step by step
Verified Expert Solution
Link Copied!

Question

1 Approved Answer

1. (a) (5 points) Use the Laplace transform method to solve the IVP y + 3y' + 2y = 128(t -2), y(0) = 2, y'(0)

image text in transcribed
1. (a) (5 points) Use the Laplace transform method to solve the IVP y" + 3y' + 2y = 128(t -2), y(0) = 2, y'(0) = -2. (b) (5 points) Solve the same initial value problem except this time replace the right-hand side of the differential equation by g(t) = tuz(t). That is, solve y" ( t) + 3y' (t) + 2y(t) = tuz(t), y (0) = 2, y' (0) = -2. 2. A spring-mass system with damping, described by the equation a" + 2x' + 2x = 0, is initially at rest but the mass is struck twice with a hammer: First it is struck with a unit impulse o at time t = 7, and then it is struck with an impulse Fo at time t = T > 7, where F # 0. Thus, the position x(t) of the mass obeys the symbolic IVP " + 2x' + 2x = 6(t - 7) + FS(t -T), x(0) = 0, x'(0) = 0. (a) (5 points) Find the position a(t) of the mass for all t 2 0. (b) (5 points) Given that T = 37, find the strength F such that x(t) = 0 for all t 2 T = 37, i.e., the second hammer strike perfectly cancels out the motion caused by the first hammer strike. 3. (a) (4 points) Find the Laplace transform of f(t) = / 2e-(t-v) cos(t - v)du. (b) (6 points) Use Laplace transforms to solve the integro-differential equation 1' = t+ vy(t - v) do, y (0) = 0

Step by Step Solution

There are 3 Steps involved in it

Step: 1

blur-text-image

Get Instant Access to Expert-Tailored Solutions

See step-by-step solutions with expert insights and AI powered tools for academic success

Step: 2

blur-text-image_2

Step: 3

blur-text-image_3

Ace Your Homework with AI

Get the answers you need in no time with our AI-driven, step-by-step assistance

Get Started

Recommended Textbook for

A First Course in Differential Equations with Modeling Applications

Authors: Dennis G. Zill

10th edition

978-1111827052

More Books

Students also viewed these Mathematics questions