1. Assume that the transistors of Figure 1 have a current gain of 150. Calculate the base currents and collector voltages for the amplifier of Figure 1 and record them in Table 1. Also, compute and record the theoretical (ideal) input offset current and output offset voltage. 2 . Construct the circuit of Figure 1. 3. Measure and record the base currents in Table 1. (Note: You may wish to measure the voltage across the base resistors and compute the base currents if the DMM cannot measure small DC currents.) Based on these currents, compute and record the experimental input bias and offset currents along with the corresponding deviations. 4. Measure and record the collector voltages in Table 1. Based on these voltages, compute and record the experimental output offset voltage and the corresponding deviation. Draw the electric dipole configuration on a sheet of graph paper to the same scale and coordinates as those of the painted dipole on the imprinted grid on the conducting sheet. Then place the dipole conducting sheet on the board, and set the contact terminals firmly on the painted electrode connections. AC Parameters 5. Calculate the differential voltage gain and collector voltages for the amplifier of Figure 2 using an input of 20 millivolts, and record them in Table 2. 6. Construct the circuit of Figure 2. 7. Set the generator to a 1 kiz sine wave, 20 millivolts peak. 3. Apply the generator to the amplifier. Measure and record the AC collector voltages in Table 2 while noting the phase relative to the input. Also, compute the resulting experimental voltage gain from the input to collector one, and the deviations. 9. Apply the generator to both inputs. Set the generator's output to 1 volt peak. 10. Measure the AC voltage at collector one and record it in Table 3. 11. Based on the value measured in step 10, compute and record the common-mode gain and CMRR in Table 3