Answered step by step
Verified Expert Solution
Question
1 Approved Answer
1. Let X be a topological space and AC X. Then prove that 2/P xA if and only if every open set U containing
1. Let X be a topological space and AC X. Then prove that 2/P xA if and only if every open set U containing a intersects A. (4) if B is a basis for X, then xe A if and only if every basis element BEB containing intersects A. Prove the following: (a) Let X be an infinite set. Then check whether X with cofinite topology satisfy T and T axioms or not. Let X be a compact topological space and Y be a closed subspace of X. Then Y is compact. 12 2. Let X be a topological space and Y CX be a subspace of X. Then prove that (a) Y is compact if and only if every covering of Y by open sets in X has a subcovering that contains Y. If Y is compact and X is Hausdorff, then Y is closed. 4. Let X be a topological space and Y C X is a connected subspace of X. Then prove that (a) if A and B form a separation of X, then Y lies entirely within either A or B. if bf Y CZCY, then Z is also connected. WHY
Step by Step Solution
There are 3 Steps involved in it
Step: 1
Get Instant Access to Expert-Tailored Solutions
See step-by-step solutions with expert insights and AI powered tools for academic success
Step: 2
Step: 3
Ace Your Homework with AI
Get the answers you need in no time with our AI-driven, step-by-step assistance
Get Started