Question
1. Using the rotated component matrix, answer the following questions. a. How many factors (dimensions) did this analysis indicate for the concept of self-esteem? b.
1. Using the rotated component matrix, answer the following questions.
a. How many factors (dimensions) did this analysis indicate for the concept of self-esteem?
b. What items should be in each one of the two dimensions of self-esteem?
2. What is the most important thing you learned in this class this semester? Why?
Factor Analysis
Communalities |
| ||||||||||
| Initial | Extraction |
| ||||||||
Esteem1 | 1.000 | .602 |
| ||||||||
Esteem2 | 1.000 | .692 |
| ||||||||
Esteem3 | 1.000 | .718 |
| ||||||||
Esteem4 | 1.000 | .644 |
| ||||||||
Esteem5 | 1.000 | .505 |
| ||||||||
Esteem6 | 1.000 | .710 |
| ||||||||
Esteem7 | 1.000 | .574 |
| ||||||||
Esteem8 | 1.000 | .687 |
| ||||||||
Esteem9 | 1.000 | .594 |
| ||||||||
Esteem10 | 1.000 | .587 |
| ||||||||
Extraction Method: Principal Component Analysis. |
| ||||||||||
Total Variance Explained | |||||||||||
Component | Initial Eigenvalues | Extraction Sums of Squared Loadings |
|
| |||||||
Total | % of Variance | Cumulative % | Total | % of Variance | Cumulative % |
| |||||
1 | 4.807 | 48.066 | 48.066 | 4.807 | 48.066 | 48.066 |
| ||||
2 | 1.507 | 15.067 | 63.133 | 1.507 | 15.067 | 63.133 |
| ||||
3 | .760 | 7.605 | 70.737 |
|
|
|
| ||||
4 | .642 | 6.423 | 77.160 |
|
|
|
| ||||
5 | .514 | 5.136 | 82.296 |
|
|
|
| ||||
6 | .443 | 4.430 | 86.726 |
|
|
|
| ||||
7 | .380 | 3.798 | 90.524 |
|
|
|
| ||||
8 | .360 | 3.599 | 94.123 |
|
|
|
| ||||
9 | .318 | 3.178 | 97.301 |
|
|
|
| ||||
10 | .270 | 2.699 | 100.000 |
|
|
|
| ||||
Extraction Method: Principal Component Analysis. | |||||||||||
Component Matrixa | ||
| Component | |
1 | 2 | |
Esteem1 | .698 | .338 |
Esteem2 | .684 | -.474 |
Esteem3 | .589 | .609 |
Esteem4 | .601 | .532 |
Esteem5 | .704 | -.098 |
Esteem6 | .751 | -.383 |
Esteem7 | .726 | .218 |
Esteem8 | .718 | -.414 |
Esteem9 | .698 | -.327 |
Esteem10 | .745 | .179 |
Extraction Method: Principal Component Analysis. | ||
a. 2 components extracted. |
Rotated Component Matrixa | ||
| Component | |
1 | 2 | |
Esteem1 | .298 | .716 |
Esteem2 | .826 | .099 |
Esteem3 | .037 | .846 |
Esteem4 | .097 | .797 |
Esteem5 | .591 | .394 |
Esteem6 | .816 | .212 |
Esteem7 | .399 | .644 |
Esteem8 | .812 | .166 |
Esteem9 | .739 | .218 |
Esteem10 | .439 | .628 |
Extraction Method: Principal Component Analysis. Rotation Method: Varimax with Kaiser Normalization. | ||
a. Rotation converged in 3 iterations. |
Step by Step Solution
There are 3 Steps involved in it
Step: 1
Get Instant Access to Expert-Tailored Solutions
See step-by-step solutions with expert insights and AI powered tools for academic success
Step: 2
Step: 3
Ace Your Homework with AI
Get the answers you need in no time with our AI-driven, step-by-step assistance
Get Started