Answered step by step
Verified Expert Solution
Link Copied!

Question

1 Approved Answer

1.Convert the polar equation to rectangular coordinates . r=2cos() a. x2+y2=2y b. x2+y 2=2x c.x2+y2=2y d. x2+y2=2x 2.Given the polar form of the the point

1.Convert the polar equation torectangular coordinates.

r=2cos()

a. x2+y2=2y

b. x2+y 2=2x

c.x2+y2=2y

d. x2+y2=2x

2.Given thepolar formof the the pointPconvert it to rectangular coordinates.

P=(6,11/12)

a. (33,1/2)

b. (33,1/2)

c. (33,1/2)

d. (33,1/2)

3.Convert the polar equation torectangular coordinates.

r=4rcos()+5

a. x2+5y2=4

b. (x2)2+y2=9

c. x2+4y2=5

d.(x2)2+y2=5

4.Give thepolar formof the the pointP.

P=(14,2/3)

a.(7,73)

b.(7,73)

c.(7,73)

d. (7,73)

5.Convert the polar equation torectangular coordinates.

r=2rsin()+3

a. (x1)2+y2=4

b. x2+(y1)2=3

c. (x1)2+y2=3

d. x2+(y1)2=4

6.Convert the polar equation torectangular coordinates.

r=8/sin()+2cos()

a. 8x+y=2

b. 2x+y=8

c. 2y+x=8

d. x+8y=2

7.Give thepolar formof the the pointP.

P=(8,/2)

a. (8,0)

b. (0,8)

c. (8,0)

d. (0,8)

8.Convert the polar equation torectangular coordinates.

r=5sec()

a. 5=x

b. x2+y2=5x

c. x2+y2=5y

d. x2+5y2=y

9. Given thepolar formof the the pointPconvert to rectangular coordinates.

P=(9,)

a. (9,0)

b. (9,0)

c. (0,9)

d. (0,9)

10. Give thepolar formof the the pointP.

P=(5,3/4)

a. (52/2 ,52/2)

b. (52/2 , 52/2)

c. (52/2, ,52)

d. (52/2,52)

11. Give thepolar formof the the pointP.

P=(3,4)

a. 5[cos(37.9o)+isin(37.9o)]

b. 5[cos(53.1o)isin(53.1o)]

c. 5[cos(37.9o)isin(37.9o)]

d. 5[cos(53.1o)+isin(53.1o)]

Step by Step Solution

There are 3 Steps involved in it

Step: 1

blur-text-image

Get Instant Access to Expert-Tailored Solutions

See step-by-step solutions with expert insights and AI powered tools for academic success

Step: 2

blur-text-image_2

Step: 3

blur-text-image_3

Ace Your Homework with AI

Get the answers you need in no time with our AI-driven, step-by-step assistance

Get Started

Recommended Textbook for

Probability and Random Processes With Applications to Signal Processing and Communications

Authors: Scott Miller, Donald Childers

2nd edition

123869811, 978-0121726515, 121726517, 978-0130200716, 978-0123869814

More Books

Students also viewed these Mathematics questions

Question

6. How are goods and services produced in the global economy?

Answered: 1 week ago