Question
1.The accompanying computer excel output (please see attachment on Blackboard) provides details of data and analysis on the topic of firm sales.A manager wishes to
1.The accompanying computer excel output (please see attachment on Blackboard) provides details of data and analysis on the topic of "firm sales".A manager wishes to study the relation between sales (Y), advertising spending (X1, in $), firm size (X2), and financial leverage (X3).
The output includes a listing of all 60 observations; and, the results of a regression analysis that uses firm sales as the dependent variable, and advertising, firm size, and financial leverage.
a.Write out the regression equation, with specific intercept and slope estimates.Remember that the regression is already estimated for you so you only need to write the equation of the estimated model. For example: Y=....
Regression formula y=bx+a
b.For the first row of actual data from the excel file, use the equation in (a) to "predict" the value of Y. For this row, also compute the "residual" (actual value minus the predicted value). Note: Only use the first raw of data and not the whole data set.
c.Evaluate the statistical significance of each of the three slope estimates. This can be done in a very summary way.Use a significance level of 0.05. Note: You can either use the p-value or t-statistics to determine whether the coefficients are significant or not.
d.Use the R-square and F-test to evaluate the overall reliability of the regression.
Data provided below (i can also send the excel spreadsheet as well)
sales 1198 1460.19 1584.82 1654.46 1737.03 1750.51 1726.8 1676.91 1652.4 1608.91 3285.39 3707.49 3912.85 4151.29 4376.9 4235.22 3620.58 2858.5 2761.39 2826.92 293.62 328.579 727.334 1243.28 1263.72 1822.76 3580.83 3416.41 2431.36 2505.24 318.521 308.817 322.151 324.64 320.387 317.662 292.863 244.933 348.748 350.097 17140.5 19064.7 20460.2 21586.4 22786.6 23522.4 22744.7 24074.6 27006 27567 1041.36 1110.29 1306.24 1410.23 1360.3 1248.56 1194.8 1265.16 1325.84 1251.49
ad 42.295 46.69 40.788 41.807 40.775 45.708 45.648 49.311 51.266 45.384 135.2 151.3 126 146.1 149.6 133.6 113.2 80.6 80.2 80.4 16.115 16.6 43.5 78.6 79.27 110.849 182.008 169.704 106.658 103.147 1.02 4.046 6.209 6.676 5.8 3.8 4.6 3.1 2 2.4 709.8 722.6 771.4 787.2 718.3 703.4 650.8 687 768.6 787.5 1.7 11.9 13.1 20.7 19.64 19.92 19.4 15 12.4 20.1
size 2.93864 3.07335 3.08249 3.07808 3.08172 3.05981 3.04499 3.03914 3.02767 3.00597 3.28854 3.34388 3.33367 3.3467 3.36512 3.34106 3.2898 3.26767 3.1716 3.15718 3.01827 3.02815 3.44863 3.19325 3.16273 3.66704 3.69683 3.6751 3.63354 3.63379 2.44697 2.37066 2.31432 2.31545 2.3417 2.35511 2.28862 2.38443 2.35797 2.36364 4.40697 4.44463 4.47696 4.46275 4.46822 4.45426 4.48036 4.50481 4.51838 4.54884 2.97148 3.03103 3.06877 3.08985 3.10447 3.05084 3.02695 3.07446 3.0695 3.01836
leverage 0.274201 0.448616 0.417412 0.410816 0.492455 0.47919 0.424647 0.393131 0.383937 0.4268 0.413237 0.542254 0.489694 0.515779 0.652683 0.728657 0.668065 0.60653 0.704352 0.784222 0.609943 0.707946 0.268072 1.51911 0.736702 0.216276 0.454671 0.557631 0.597461 0.535555 0.528685 0.433116 0.300309 0.199235 0.188359 0.17028 0.160693 0.334163 0.276217 0.252613 0.530584 0.489843 0.494941 0.467392 0.480132 0.5298 0.535684 0.542327 0.5638 0.567813 0.448407 0.475617 0.550041 0.642783 0.660739 0.629632 0.494281 0.501516 0.508985 0.50456
SUMMARY OUTPUT
Regression Statistics
Multiple R 0.984822851
R Square 0.969876048
Adjusted R Square 0.968262264
Standard Error 1430.876622
Observations 60
ANOVA
Regression
df 3
SS 3691447394
MS
1230482465
F 600.9952684
Significance F 1.53076E-42
Residual
df 56
SS 114654842.8
MS 2047407.907
Intercept
Betas 1504.507947
Standard Error 1921.548858
t Stat 0.782966273
P-value 0.436945613
Lower 95% -2344.816968
Upper 95% 5353.832862
Advertising
Betas 31.7153263
Standard Error 1.731192888
t Stat 18.3199264
P-value 2.55407E-25
Lower 95% 28.24733021
Upper 95% 35.18332238
Size
Betas -532.7043998
Standard Error 712.8094108
t Stat -0.747330762
P-value 0.457990546
Lower 95% -1960.633236
Upper 95% 895.2244367
Leverage
Betas 217.2876113
Standard Error 1036.300256
t Stat 0.209676308
P-value 0.834681271
Lower 95% -1858.671259
Upper 95% 2293.246481
Step by Step Solution
There are 3 Steps involved in it
Step: 1
Get Instant Access to Expert-Tailored Solutions
See step-by-step solutions with expert insights and AI powered tools for academic success
Step: 2
Step: 3
Ace Your Homework with AI
Get the answers you need in no time with our AI-driven, step-by-step assistance
Get Started