Question
1.You must use below code as your base. 2. It is in the file Sorts.java in the ch11.sorts package. The program includes a swap method
1.You must use below code as your base.
2. It is in the file Sorts.java in the ch11.sorts package. The program includes a swap method that is used by all of the sorting methods to swap array elements.
a. Implement an approach to modifying the program so that after calling a sorting method the program prints out the number of swaps needed by the sorting method. Hint: static int numSwaps out of the main method
b. Test your new program by running the selectionSort method. Your program should report 49 swaps.
3. Have the program also output the number of comparisons (compares) needed. You must include one or more statements to increment your counter within the sorting methods themselves. For each of the listed methods, make and test the changes needed, and list both the number of swaps and the number of compares needed by the Sorts program to sort an array of 50 random integers.
a. selectionSort swaps: always 49 compares: always 1225
b. bubbleSort swaps: around 590 compares: always 1225
c. shortBubble swaps: around 590 compares: around 1180
d. insertionSort swaps: around 675 compares: around 725
code
import java.util.*; import java.text.DecimalFormat;
public class Sorts { static final int SIZE = 50; // size of array to be sorted static int[] values = new int[SIZE]; // values to be sorted
static void initValues() // Initializes the values array with random integers from 0 to 99. { Random rand = new Random(); for (int index = 0; index < SIZE; index++) values[index] = Math.abs(rand.nextInt()) % 100; }
static public boolean isSorted() // Returns true if the array values are sorted and false otherwise. { for (int index = 0; index < (SIZE - 1); index++) if (values[index] > values[index + 1]) return false; return true; }
static public void swap(int index1, int index2) // Precondition: index1 and index2 are >= 0 and < SIZE. // // Swaps the integers at locations index1 and index2 of the values array. { int temp = values[index1]; values[index1] = values[index2]; values[index2] = temp; }
static public void printValues() // Prints all the values integers. { int value; DecimalFormat fmt = new DecimalFormat("00"); System.out.println("The values array is:"); for (int index = 0; index < SIZE; index++) { value = values[index]; if (((index + 1) % 10) == 0) System.out.println(fmt.format(value)); else System.out.print(fmt.format(value) + " "); } System.out.println(); }
///////////////////////////////////////////////////////////////// // // Selection Sort
static int minIndex(int startIndex, int endIndex) // Returns the index of the smallest value in // values[startIndex]..values[endIndex]. { int indexOfMin = startIndex; for (int index = startIndex + 1; index <= endIndex; index++) if (values[index] < values[indexOfMin]) indexOfMin = index; return indexOfMin; }
static void selectionSort() // Sorts the values array using the selection sort algorithm. { int endIndex = SIZE - 1; for (int current = 0; current < endIndex; current++) swap(current, minIndex(current, endIndex)); }
///////////////////////////////////////////////////////////////// // // Bubble Sort
static void bubbleUp(int startIndex, int endIndex) // Switches adjacent pairs that are out of order // between values[startIndex]..values[endIndex] // beginning at values[endIndex]. { for (int index = endIndex; index > startIndex; index--) if (values[index] < values[index - 1]) swap(index, index - 1); } static void bubbleSort() // Sorts the values array using the bubble sort algorithm. { int current = 0; while (current < (SIZE - 1)) { bubbleUp(current, SIZE - 1); current++; } }
///////////////////////////////////////////////////////////////// // // Short Bubble Sort
static boolean bubbleUp2(int startIndex, int endIndex) // Switches adjacent pairs that are out of order // between values[startIndex]..values[endIndex] // beginning at values[endIndex]. // // Returns false if a swap was made; otherwise, returns true. { boolean sorted = true; for (int index = endIndex; index > startIndex; index--) if (values[index] < values[index - 1]) { swap(index, index - 1); sorted = false; } return sorted; } static void shortBubble() // Sorts the values array using the bubble sort algorithm. // The process stops as soon as values is sorted. { int current = 0; boolean sorted = false; while ((current < (SIZE - 1)) && !sorted) { sorted = bubbleUp2(current, SIZE - 1); current++; } }
///////////////////////////////////////////////////////////////// // // Insertion Sort
static void insertItem(int startIndex, int endIndex) // Upon completion, values[0]..values[endIndex] are sorted. { boolean finished = false; int current = endIndex; boolean moreToSearch = true; while (moreToSearch && !finished) { if (values[current] < values[current - 1]) { swap(current, current - 1); current--; moreToSearch = (current != startIndex); } else finished = true; } } static void insertionSort() // Sorts the values array using the insertion sort algorithm. { for (int count = 1; count < SIZE; count++) insertItem(0, count); }
///////////////////////////////////////////////////////////////// // // Merge Sort
static void merge (int leftFirst, int leftLast, int rightFirst, int rightLast) // Preconditions: values[leftFirst]..values[leftLast] are sorted. // values[rightFirst]..values[rightLast] are sorted. // // Sorts values[leftFirst]..values[rightLast] by merging the two subarrays. { int[] tempArray = new int [SIZE]; int index = leftFirst; int saveFirst = leftFirst; // to remember where to copy back while ((leftFirst <= leftLast) && (rightFirst <= rightLast)) { if (values[leftFirst] < values[rightFirst]) { tempArray[index] = values[leftFirst]; leftFirst++; } else { tempArray[index] = values[rightFirst]; rightFirst++; } index++; } while (leftFirst <= leftLast) // Copy remaining items from left half. { tempArray[index] = values[leftFirst]; leftFirst++; index++; } while (rightFirst <= rightLast) // Copy remaining items from right half. { tempArray[index] = values[rightFirst]; rightFirst++; index++; } for (index = saveFirst; index <= rightLast; index++) values[index] = tempArray[index]; }
static void mergeSort(int first, int last) // Sorts the values array using the merge sort algorithm. { if (first < last) { int middle = (first + last) / 2; mergeSort(first, middle); mergeSort(middle + 1, last); merge(first, middle, middle + 1, last); } }
///////////////////////////////////////////////////////////////// // // Quick Sort
static int split(int first, int last) { int splitVal = values[first]; int saveF = first; boolean onCorrectSide; first++; do { onCorrectSide = true; while (onCorrectSide) // move first toward last if (values[first] > splitVal) onCorrectSide = false; else { first++; onCorrectSide = (first <= last); } onCorrectSide = (first <= last); while (onCorrectSide) // move last toward first if (values[last] <= splitVal) onCorrectSide = false; else { last--; onCorrectSide = (first <= last); } if (first < last) { swap(first, last); first++; last--; } } while (first <= last); swap(saveF, last); return last; }
static void quickSort(int first, int last) { if (first < last) { int splitPoint; splitPoint = split(first, last); // values[first]..values[splitPoint - 1] <= splitVal // values[splitPoint] = splitVal // values[splitPoint+1]..values[last] > splitVal quickSort(first, splitPoint - 1); quickSort(splitPoint + 1, last); } }
///////////////////////////////////////////////////////////////// // // Heap Sort
///////////////////////////////////////////////////////////////// // // Main
public static void main(String[] args) { initValues(); printValues(); System.out.println("values is sorted: " + isSorted()); System.out.println(); // make call to sorting method here (just remove //) // selectionSort(); // bubbleSort(); // shortBubble(); // insertionSort(); // mergeSort(0, SIZE - 1); // quickSort(0, SIZE - 1); // heapSort();
printValues(); System.out.println("values is sorted: " + isSorted()); System.out.println(); } }
Step by Step Solution
There are 3 Steps involved in it
Step: 1
Get Instant Access to Expert-Tailored Solutions
See step-by-step solutions with expert insights and AI powered tools for academic success
Step: 2
Step: 3
Ace Your Homework with AI
Get the answers you need in no time with our AI-driven, step-by-step assistance
Get Started