Answered step by step
Verified Expert Solution
Question
1 Approved Answer
2. (20 points) For each pair of sets, determine whether they are disjoint, equal, proper subset or none of the above. Give a justification for
2. (20 points) For each pair of sets, determine whether they are disjoint, equal, proper subset or none of the above. Give a justification for each answer. - In order to justify that A and B are equal, you will need to show that any arbitrary element of A is in B and any arbitrary element of B is in A. - In order to justify that A is a proper subset of B, you will need to show that any arbitrary element of A is in B and there exists an element in B that is not in A. - In order to justify that A and B are disjoint then you will need to show that any arbitrary element of A is not in B (or vice versa) - In order to justify none of the above then you will need to show that there exists an element that is in both sets A and B and that there exists an element of A that is not in B and there exists an element in B that is not in A. (a) A={xZx22x} and B={xZx2} (b) A={xRx2Z} and B=Q (c) A={xRx/Q} and B={xRx/Z} (d) A=ZQ and B=QZ (e) A={(x,y)ZZx+y is even } and B={(x,y)ZZx is even and y is even }
Step by Step Solution
There are 3 Steps involved in it
Step: 1
Get Instant Access to Expert-Tailored Solutions
See step-by-step solutions with expert insights and AI powered tools for academic success
Step: 2
Step: 3
Ace Your Homework with AI
Get the answers you need in no time with our AI-driven, step-by-step assistance
Get Started