Answered step by step
Verified Expert Solution
Link Copied!

Question

1 Approved Answer

2) This question should be answered using the Marketing data set, which is provided on Blackboard. Consider observations 1 to 120 as training data and

2) This question should be answered using the Marketing data set, which is provided on Blackboard.

Consider observations 1 to 120 as training data and rest of them as testing data.

Use the training data set to perform a k-nearest neighbor model with pop_density as

the response and rest of the variables as predictors (google_adwords. Facebook,

twitter, marketing_total, revenues, employees). Where choose k as 5.

Calculate the training error of k-nearest neighbor method by using R.

Calculate the testing error of k-nearest neighbor method by using R.

Observation google_adwords facebook twitter marketing_total revenues employees pop_density
1 65.66 47.86 52.46 165.98 39.26 5 High
2 39.1 55.2 77.4 171.7 38.9 7 Medium
3 174.81 52.01 68.01 294.83 49.51 11 Medium
4 34.36 61.96 86.86 183.18 40.56 7 High
5 78.21 40.91 30.41 149.53 40.21 9 Low
6 34.19 15.09 12.79 62.07 38.09 3 High
7 225.71 15.91 33.31 274.93 44.21 10 Low
8 90.03 17.13 34.33 141.49 40.23 6 High
9 238.4 35.1 13.9 287.4 48.8 6 Medium
10 43.53 42.23 71.83 157.59 36.63 4 Low
11 118.24 15.74 14.14 148.12 38.14 7 Medium
12 224.64 40.84 52.74 318.22 47.24 9 High
13 219.51 59.21 63.21 341.93 54.21 10 High
14 89.79 45.99 122.19 257.97 42.19 6 Low
15 306.09 51.69 66.69 424.47 56.79 12 Medium
16 91.98 30.68 27.28 149.94 41.78 6 High
17 242.72 39.42 63.92 346.06 50.02 10 Medium
18 263.64 18.74 35.94 318.32 46.44 6 Low
19 35.16 25.26 57.76 118.18 35.26 5 Low
20 253.04 29.04 37.14 319.22 47.94 10 High
21 88.14 25.84 30.34 144.32 43.24 6 High
22 163.68 37.48 19.58 220.74 43.48 6 Low
23 263.96 27.96 32.96 324.88 47.46 9 Medium
24 268.98 34.68 29.28 332.94 46.78 9 Low
25 314.07 36.87 50.57 401.51 50.27 9 Low
26 134.9 26.8 46.8 208.5 41.6 8 High
27 284.99 26.79 5.89 317.67 44.49 10 Medium
28 117.68 10.78 15.58 144.04 39.18 3 Low
29 316.09 16.89 20.09 353.07 45.89 10 Medium
30 288.58 52.88 12.88 354.34 54.78 10 Low
31 97.37 59.47 54.57 211.41 45.07 10 Medium
32 66.6 37.6 44.8 149 41.3 7 High
33 250.75 47.85 40.95 339.55 51.95 12 Medium
34 223.1 30.3 38.4 291.8 44.9 6 High
35 202.09 45.89 49.99 297.97 49.89 9 Medium
36 317.58 39.08 11.98 368.64 52.38 9 High
37 231.76 20.66 37.46 289.88 45.46 8 High
38 45.16 33.16 49.56 127.88 36.26 6 Medium
39 199.47 34.27 42.07 275.81 46.97 8 Low
40 262.08 51.08 26.88 340.04 53.08 9 Low
41 224.85 15.55 45.85 286.25 44.15 9 Low
42 124.23 20.83 13.63 158.69 42.23 8 Medium
43 241.18 53.88 50.58 345.64 55.08 9 Low
44 205.77 56.77 68.07 330.61 52.07 10 Medium
45 285.71 39.21 25.11 350.03 50.91 10 Low
46 32.13 40.33 52.43 124.89 38.03 6 Low
47 155.66 26.06 22.26 203.98 40.36 9 High
48 233.44 59.64 46.54 339.62 54.14 10 Low
49 235.13 41.33 19.93 296.39 50.53 12 High
50 77.65 13.55 31.75 122.95 39.95 7 Medium
51 283.94 52.74 63.54 400.22 54.54 10 Medium
52 128.03 42.33 19.93 190.29 47.03 7 High
53 153.47 52.57 37.47 243.51 48.07 9 Low
54 90.01 17.71 8.11 115.83 38.01 4 Low
55 51.29 31.79 8.19 91.27 36.99 4 Medium
56 159.3 21.9 16.4 197.6 41.1 9 Medium
57 258.91 36.41 18.71 314.03 48.11 10 High
58 239.73 54.23 36.33 330.29 52.93 11 Low
59 133.73 25.63 41.83 201.19 44.03 8 Medium
60 48.95 42.55 27.65 119.15 38.65 3 Low
61 155.09 18.79 43.19 217.07 44.39 8 High
62 234.76 33.36 20.66 288.78 46.06 8 High
63 50.01 11.51 29.41 90.93 37.11 3 Low
64 142.13 37.53 22.03 201.69 43.53 10 High
65 29.26 41.16 19.46 89.88 36.86 6 High
66 137.11 16.21 30.41 183.73 39.81 3 Medium
67 262.45 14.15 45.75 322.35 42.65 7 Medium
68 99.96 32.36 43.36 175.68 43.66 7 Low
69 88.29 51.79 41.69 181.77 41.19 7 Low
70 238.93 55.83 45.43 340.19 54.83 11 Medium
71 214.87 27.47 73.57 315.91 44.57 6 Medium
72 101.48 40.08 27.38 168.94 44.88 7 High
73 132.43 49.73 71.13 253.29 45.43 8 High
74 109.94 34.54 81.24 225.72 42.24 6 Low
75 132.43 57.83 60.23 250.49 47.03 10 High
76 159.85 17.85 21.05 198.75 44.45 8 Medium
77 243.05 46.25 70.55 359.85 52.45 10 Medium
78 272.93 45.93 80.53 399.39 51.93 9 Medium
79 132.14 26.14 21.84 180.12 43.94 10 High
80 189.32 45.02 65.12 299.46 50.62 12 Medium
81 219.94 13.24 14.44 247.62 41.74 8 Low
82 313.99 53.99 61.69 429.67 57.39 12 Low
83 157.3 51.2 54.2 262.7 47 7 Low
84 243.98 13.28 57.58 314.84 40.98 7 Medium
85 321 48.3 111.7 481 56.1 12 High
86 300.92 18.22 28.32 347.46 43.22 9 Medium
87 262.48 45.98 15.78 324.24 52.68 9 High
88 158.05 53.95 65.35 277.35 47.05 8 High
89 46.02 19.42 36.92 102.36 35.92 6 Low
90 110.7 8 29.7 148.4 36.7 6 High
91 34.08 8.78 32.78 75.64 33.98 5 Low
92 275.11 34.01 11.41 320.53 47.21 7 Low
93 249.6 19.4 66.5 335.5 44.9 9 High
94 267.13 50.83 34.83 352.79 54.93 11 Low
95 200.45 27.55 13.35 241.35 46.55 6 Low
96 234.48 32.88 21.78 289.14 48.48 10 Low
97 100.69 56.69 43.19 200.57 44.79 10 High
98 97.27 44.57 61.07 202.91 42.47 8 High
99 164.18 26.68 36.78 227.64 44.88 8 High
100 99.93 11.73 24.53 136.19 40.63 8 High
101 43.28 27.28 32.38 102.94 38.18 5 Medium
102 163.07 35.97 54.17 253.21 44.97 10 Low
103 245.19 10.99 22.99 279.17 40.49 7 Low
104 149.35 48.25 24.85 222.45 49.15 10 Medium
105 253.23 43.43 84.13 380.79 51.13 10 Medium
106 107.99 19.99 32.89 160.87 39.09 5 Medium
107 28.01 46.51 57.01 131.53 34.51 6 Low
108 102.85 10.05 18.05 130.95 39.15 5 High
109 246.07 62.17 15.17 323.41 58.17 10 Low
110 83.09 22.89 52.79 158.77 40.89 10 Low
111 26.83 53.13 21.03 100.99 35.43 4 Medium
112 289.62 14.72 53.62 357.96 44.82 6 Low
113 30.2 36.4 10.1 76.7 35.2 3 Low
114 59.22 48.32 74.12 181.66 40.82 7 Low
115 68.64 54.74 15.04 138.42 39.64 6 Medium
116 44.99 45.79 14.89 105.67 36.59 4 High
117 298.01 40.61 70.21 408.83 52.81 12 High
118 63.02 33.32 26.72 123.06 37.32 7 High
119 207.32 53.72 10.32 271.36 50.82 12 Medium
120 97.18 28.18 22.88 148.24 42.38 8 Low
121 219.94 49.04 88.04 357.02 53.14 10 High
122 243.27 43.37 46.87 333.51 50.57 12 Medium
123 127.29 15.79 43.29 186.37 40.79 6 Medium
124 116.71 22.71 45.61 185.03 39.61 6 Medium
125 164.88 13.88 19.78 198.54 42.58 6 Low
126 262.58 17.18 17.38 297.14 43.38 8 Medium
127 266.08 59.28 53.38 378.74 55.98 12 High
128 65.45 33.95 27.55 126.95 38.55 3 High
129 301.6 22.2 44.1 367.9 44.7 6 High
130 144.47 19.27 58.37 222.11 42.77 6 High
131 194.62 50.42 47.22 292.26 50.02 10 Medium
132 207.64 28.34 15.54 251.52 43.14 6 Low
133 23.65 18.55 11.45 53.65 30.45 3 Low
134 117.7 54.7 60.5 232.9 46.8 10 Low
135 175.6 14.5 36.3 226.4 43.6 7 High
136 35.19 47.79 54.89 137.87 38.49 5 Medium
137 154.93 29.03 44.03 227.99 43.83 7 Low
138 195.48 28.48 39.88 263.84 45.08 10 Low
139 111.9 49.4 61.7 223 47.2 7 High
140 186.35 47.05 16.45 249.85 48.55 8 Low
141 141.28 26.18 15.68 183.14 43.68 7 Low
142 258.01 14.31 94.51 366.83 43.11 9 Low
143 38.87 45.97 28.77 113.61 36.67 4 Medium
144 227.91 13.71 26.71 268.33 41.01 10 Low
145 239.81 35.41 68.21 343.43 49.21 10 Low
146 306.77 20.47 15.07 342.31 45.17 10 Medium
147 185.03 28.83 54.13 267.99 42.73 7 Low
148 44.13 32.03 27.73 103.89 39.83 4 Medium
149 188.43 14.53 19.03 221.99 39.43 7 Low
150 247.75 16.15 24.65 288.55 44.55 7 Low
151 300.5 59.9 51.6 412 58.3 9 High
152 193.4 18.4 44.6 256.4 42.6 9 Low
153 298.3 11.3 31.5 341.1 41.1 10 High
154 188.07 19.87 26.27 234.21 42.77 6 High
155 179.4 12.8 17.3 209.5 41 9 Low
156 239.07 13.37 34.17 286.61 40.47 10 Medium
157 79.21 16.11 38.91 134.23 39.41 4 Low
158 307.43 50.23 77.83 435.49 53.73 11 Low
159 275.04 29.94 37.44 342.42 46.54 9 Low
160 225.79 53.29 26.59 305.67 51.09 10 Medium
161 160.79 10.79 34.09 205.67 39.29 4 Medium
162 216.67 41.67 29.97 288.31 50.57 12 Medium
163 308.42 23.72 12.32 344.46 46.02 9 Low
164 43.46 24.26 34.36 102.08 39.16 6 Medium
165 64.96 53.96 17.46 136.38 43.96 9 High
166 97.69 20.39 14.39 132.47 39.79 7 High
167 36.95 11.25 37.55 85.75 33.35 7 Low
168 188.45 51.05 11.45 250.95 48.95 9 Low
169 174.07 47.37 16.57 238.01 49.37 12 High
170 59.86 12.76 21.66 94.28 36.96 4 Low
171 117.91 16.01 18.01 151.93 41.11 7 Low
172 308.78 54.58 77.58 440.94 58.38 10 Medium

3) For this assignment, you need to use Smarket dataset which is available with ISLR library.

Support Vector Machine:

a. Using tune() function try different values for gamma and cost. Use the training data from part (1) (Consider that Direction shows the classes), (You can consider the code below).

tune.out=tune(svm, y~., data=dat, kernel="radial", ranges=list(cost=c(0.1,1,10,100,1000),gamma=c(0.5,1,2,3,4)))

b. After obtaining the optimized parameters gamma and cost from part .a, fit a support vector machine with radial kernel for the training data from part (1).

c. Find the support vectors and find their corresponding alpha values. (Make sure that they should be non-zero).

Need help with the R code

Step by Step Solution

There are 3 Steps involved in it

Step: 1

blur-text-image

Get Instant Access to Expert-Tailored Solutions

See step-by-step solutions with expert insights and AI powered tools for academic success

Step: 2

blur-text-image

Step: 3

blur-text-image

Ace Your Homework with AI

Get the answers you need in no time with our AI-driven, step-by-step assistance

Get Started

Recommended Textbook for

Mathematical Applications For The Management, Life And Social Sciences

Authors: Ronald J. Harshbarger, James J. Reynolds

12th Edition

978-1337625340

More Books

Students also viewed these Mathematics questions