Answered step by step
Verified Expert Solution
Link Copied!

Question

1 Approved Answer

25. (See Week 1 Lecture page The Equation of a Line 1 for a starting point.) As part of the second stage of a drug

25. (See Week 1 Lecture page The Equation of a Line 1 for a starting point.)

As part of the second stage of a drug trial, volunteers are given one of two dosages, in order to determine therapeutic levels. Volunteers who were given 6.5 mg had blood concentrations of 2.7 parts per million (ppm), while volunteers who were given 10 mg had blood concentrations of 5.1 ppm.

a. Determine the equation of a line that models this data, where x is the dosage given and y is the blood concentration.

b. Graph this line.

c. If the desired concentration in the bloodstream is 7.5 ppm, what should be the therapeutic dosage?

d. If the toxic concentration in the bloodstream is 11.8 ppm, what is the maximum safe dosage?

The Equation of a Line 1

Let's say that (x1, y1) and (x, y) are two points lying on the line. Applying the definition of slope m, we have

m=y-y1/x-x1

Multiplying both sides by (x x1) and rearranging, we have

y y1 = m(x x1)

We refer to this as the point-slope form of the line, since the equation is written using the coordinates of a single point on the line (x1, y1), and its slope m.

Now, lets assume that the point (x1, y1) is actually the y-intercept, which occurs at some point (0, b). Substituting these coordinates into the point-slope form of the line, we have

y b = m(x 0)

or

y = mx + b

We refer to this as the slope-intercept form of the line, since the equation is written using the slope m and the y-intercept (0, b). These two forms of the equation of a line are completely equivalent; you can use whichever is most convenient in a given situation.

Example:

Given the points (4, 3) and (2, 7), determine the equation of the line on which these points lie.

Solution:

Since we dont know the y-intercept, lets begin by using the point-slope form of the line y y1 = m(x x1) We'll select (4, 3) as the point (x1, y1) whose coordinates well use. We calculate the slope as Plugging these values into the format, we have y 3 = -2(x 4) which is one possible form of the line. If we applied the distributive law on the right, then added three to both sides, we would have y 3 = -2x + 8 y = -2x + 11 which is the slope-intercept form of this line.

Step by Step Solution

There are 3 Steps involved in it

Step: 1

blur-text-image

Get Instant Access to Expert-Tailored Solutions

See step-by-step solutions with expert insights and AI powered tools for academic success

Step: 2

blur-text-image

Step: 3

blur-text-image

Ace Your Homework with AI

Get the answers you need in no time with our AI-driven, step-by-step assistance

Get Started

Recommended Textbook for

Introduction to Real Analysis

Authors: Robert G. Bartle, Donald R. Sherbert

4th edition

471433314, 978-1118135853, 1118135857, 978-1118135860, 1118135865, 978-0471433316

More Books

Students also viewed these Mathematics questions