Question
3. An automobile with 0.260 m radius tires travels 80,000 km before wearing them out. How many revolutions do the tires make, neglecting any backing
3. An automobile with 0.260 m radius tires travels 80,000 km before wearing them out. How many revolutions do the tires make, neglecting any backing up and any change in radius due to wear?
4. (a) What is the period of rotation of Earth in seconds? (b) What is the angular velocity of Earth? (c) Given that Earth has a radius of 6.410^6m at its equator, what is the linear velocity at Earth's surface?
5. A baseball pitcher brings his arm forward during a pitch, rotating the forearm about the elbow. If the velocity of the ball in the pitcher's hand is 35.0 m/s and the ball is 0.300 m from the elbow joint, what is the angular velocity of the forearm?
7. A baseball pitcher brings his arm forward during a pitch, rotating the forearm about the elbow. If the velocity of the ball in the pitcher's hand is 35.0 m/s and the ball is 0.300 m from the elbow joint, what is the angular velocity of the forearm?
13. The propeller of a World War II fighter plane is 2.30 m in diameter.
(a) What is its angular velocity in radians per second if it spins at 1200 rev/min?
(b) What is the linear speed of its tip at this angular velocity if the plane is stationary on the tarmac?
(c) What is the centripetal acceleration of the propeller tip under these conditions? Calculate it in meters per second squared and convert to multiples of g
15. Helicopter blades withstand tremendous stresses. In addition to supporting the weight of a helicopter, they are spun at rapid rates and experience large centripetal accelerations, especially at the tip.
(a) Calculate the magnitude of the centripetal acceleration at the tip of a 4.00 m long helicopter blade that rotates at 300 rev/min.
(b) Compare the linear speed of the tip with the speed of sound (taken to be 340 m/s).
20. At takeoff, a commercial jet has a 60.0 m/s speed. Its tires have a diameter of 0.850 m.
(a) At how many rev/min are the tires rotating?
(b) What is the centripetal acceleration at the edge of the tire?
(c) With what force must a determined 1.0010^15kg bacterium cling to the rim?
(d) Take the ratio of this force to the bacterium's weight.
21. Riders in an amusement park ride shaped like a Viking ship hung from a large pivot are rotated back and forth like a rigid pendulum. Sometime near the middle of the ride, the ship is momentarily motionless at the top of its circular arc. The ship then swings down under the influence of gravity. The speed at the bottom of the arc is 23.4 m/s.
(a) What is the centripetal acceleration at the bottom of the arc?
(b) Draw a free body diagram of the forces acting on a rider at the bottom of the arc.
(c) Find the force exerted by the ride on a 60.0 kg rider and compare it to her weight.
(d) Discuss whether the answer seems reasonable.
23. (a) A 22.0 kg child is riding a playground merry-go-round that is rotating at 40.0 rev/min. What centripetal force must she exert to stay on if she is 1.25 m from its center?
(b) What centripetal force does she need to stay on an amusement park merry-go-round that rotates at 3.00 rev/min if she is 8.00 m from its center?
(c) Compare each force with her weight.
24. Calculate the centripetal force on the end of a 100 m (radius) wind turbine blade that is rotating at 0.5 rev/s. Assume the mass is 4 kg.
33. Earth is not a perfect sphere. Its radius as well as the value of g vary with latitude. (a) Calculate Earth's mass given the acceleration due to gravity at the North Pole is 9.807 m/s2
and the radius of the Earth at the pole is 6356.8 km.
(b) Compare this with the accepted value of 5.97210^24kg
40. The existence of the dwarf planet Pluto was proposed based on irregularities in Neptune's orbit. Pluto was subsequently discovered near its predicted position. But it now appears that the discovery was fortuitous, because Pluto is small and the irregularities in Neptune's orbit were not well known. To illustrate that Pluto has a minor effect on the orbit of Neptune compared with the closest planet to Neptune:
(a) Calculate the acceleration due to gravity at Neptune due to Pluto when they are4.5010^12m apart, as they are at present. The mass of Pluto is 1.410^22kg
(b) Calculate the acceleration due to gravity at Neptune due to Uranus, presently about 2.5010^12m apart, and compare it with that due to Pluto. The mass of Uranus is8.621025kg
Step by Step Solution
There are 3 Steps involved in it
Step: 1
Get Instant Access to Expert-Tailored Solutions
See step-by-step solutions with expert insights and AI powered tools for academic success
Step: 2
Step: 3
Ace Your Homework with AI
Get the answers you need in no time with our AI-driven, step-by-step assistance
Get Started