Answered step by step
Verified Expert Solution
Question
1 Approved Answer
( a ) E( X 1+ X 2| Y )=E( X 1| Y )+E( X 2| Y ) ( b ) E(1| Y )=1 (
(a) E(X1+X2|Y)=E(X1|Y)+E(X2|Y)
(b) E(1|Y)=1
(c) E(X|X)=X
(d) ifX1 X1 thenE(X1|Y)E(X2|Y)
(e) E(X|1)=E(X)
(f) E(E(X|Y))=E(X)
(g) if:RRisaBorelfunctionthen E((Y)X | Y) = (Y)E(X | Y), provided E(|(Y)X|) <
(h) if X and Y are independent then E(X | Y) = E(X)
Using the properties (a)-(h) above show that
(a) IfA,B,A,B,andAandBare disjoint, then
P(A | Y) + P(B | Y) = P(A B | Y).
(b) Forallwehave
0 P(A | Y)() 1.
(c) Forallwehave P(A | Y)() + P(Ac | Y)() = 1, where Ac =\A,isthecomplementof A.