Answered step by step
Verified Expert Solution
Link Copied!

Question

1 Approved Answer

Answer the following in R Studio with the Data Given #Get the data countries

Answer the following in R Studio with the Data Given

#Get the data countries <- read.csv("countries.csv")

#* Create a simple linear regression model of GDP predicted by population. Call #* it model.countries1.

#* What is the equation for best fit line? In this instance, just copy and #* paste the intercept and slope

#* If the null test is that the slope is 0 and the alternative test is that it #* isn't. Would we be able to reject the null? Why or why not?

#* Create a model for predicting population from average life expectancy; call #* it model.countries2. What is the equation?

#* If we used model.countries to predict population, what is the predicted #* population if the life expectancy was 90?

#* To predict GDP, use all the variables except continent to make the model for #* model.countries3. What is the equation? Use the following variable #* substitutions: #* y = gdp #* x1 = population #* x2 = primary #* x3 = secondary #* x4 = life.expect #* x5 = emission #* Use backwards elimination to determine the different models down to one predictor.

#model 1

#model 2

#model 3

#model 4

#model 5

#* What are the different Adjusted R^2 values for the different models just #* found through backwards elimination?

#* Which model is the best?

#* Make a model to predict life expectancy by continent. Use Africa as the #* reference level.

#* What continent has the largest life expectancy?

DATA GIVEN

gdp population primary secondary life.expect emission continent 1760 35400000 0.103 0.12 61.2 0.245 Asia 11400 2890000 0.0982 78.1 1.57 Europe 13900 40600000 77.4 3.64 Africa 48200 77300 0.127 0.136 82.7 6.07 Europe 6260 28800000 63.8 1.18 Africa 22400 94500 77 5.9 North America 18600 43500000 0.152 0.216 76.5 4.6 South America 8160 2940000 0.113 75.4 1.76 Asia 44600 24300000 0.193 0.15 82.5 17 Oceania 44700 8750000 0.235 0.277 81.7 7.7 Europe 16100 9740000 70.6 3.82 Asia 28600 378000 73.6 4.73 North America 43700 1430000 79.4 22.1 Asia 3420 1.58E+08 0.0988 72.9 0.481 Asia 16700 286000 0.208 0.28 77.1 4.43 North America 16800 9450000 74 6.46 Europe 42200 11400000 0.219 81.2 8.68 Europe 7770 368000 0.162 0.261 74.1 1.54 North America 2010 10900000 64.1 0.577 Africa 8940 737000 73.8 1.56 Asia 6620 11000000 72.5 1.92 South America 11800 3390000 0.435 76.5 6.42 Europe 16000 2160000 68.1 2.93 Africa 14200 2.06E+08 75.4 2.2 South America 72400 420000 0.0887 0.236 75.2 18 Asia 17800 7150000 74.9 6.33 Europe 1640 18600000 0.199 61.2 0.181 Africa 689 10500000 61.2 0.0461 Africa 3470 15800000 69.6 0.617 Asia 3280 23900000 62.1 0.334 Africa 43100 36400000 81.9 15.5 North America 6210 531000 0.171 0.199 75.5 1.02 Africa 731 4540000 51.7 0.0655 Africa 1860 14600000 59.7 0.0682 Africa 22300 18200000 0.183 0.185 79.7 4.62 South America 14400 1.41E+09 76.7 6.87 Asia 13200 48200000 0.174 0.156 80 2.01 South America 2490 796000 68.3 0.254 Africa 805 78800000 61.9 0.0254 Africa 5400 4980000 62.5 0.638 Africa 15100 4900000 0.249 0.24 79.5 1.6 North America 3400 23800000 0.158 0.228 61.7 0.331 Africa 21900 4210000 78.3 4.3 Europe 7890 11300000 78.3 2.48 North America 32000 1170000 0.319 0.393 81.7 6.29 Asia 31300 10600000 0.139 0.223 79 10 Europe 46500 5710000 80.8 6.49 Europe 3060 929000 0.373 0.00728 66.9 0.646 Africa 10500 71300 72.7 2.52 North America 14500 10400000 0.158 0.149 72.8 2.37 North America 10400 16500000 0.0951 0.0529 76.5 2.46 South America 10500 94400000 70.5 2.47 Africa 7120 6360000 0.162 0.15 73.8 1.11 North America 24300 1220000 65 4.65 Africa 1240 3380000 62.1 0.204 Africa 28600 1320000 0.203 0.212 77.9 13.3 Europe 9480 1110000 57.9 1.04 Africa 1620 1.04E+08 67.8 0.135 Africa 8970 872000 67.8 2.32 Oceania 40100 5500000 0.215 0.248 81.5 8.6 Europe 38100 64700000 0.174 0.263 82.8 5.31 Europe 16500 2010000 67.7 2.64 Africa 1440 2150000 65.4 0.247 Africa 9260 4020000 72.8 2.47 Asia 44700 82200000 0.174 0.23 80.5 9.76 Europe 3830 28500000 64.8 0.57 Africa 24200 10600000 0.203 0.23 80.9 6.73 Europe 12800 110000 74 2.43 North America 7370 16600000 0.111 0.0512 72.6 0.988 North America 2010 11700000 0.0681 60.1 0.234 Africa 1530 1780000 59.3 0.165 Africa 7280 771000 68.9 3.04 South America 1660 10800000 64.3 0.273 North America 4340 9270000 73.8 1.04 North America 25700 9750000 0.191 0.231 76.4 4.87 Europe 46800 332000 0.221 0.194 82.7 10.5 Europe 6140 1.32E+09 68.6 1.79 Asia 10700 2.62E+08 71.2 2.15 Asia 18700 79600000 0.0952 0.169 77 8.21 Asia 16500 36600000 76.7 5.15 Asia 62800 4700000 0.118 0.159 81.8 8.5 Europe 32700 8110000 0.215 0.187 82.9 7.89 Asia 34700 60700000 0.195 83 5.83 Europe 8120 2910000 0.218 0.276 74.5 2.81 North America 38100 1.28E+08 0.218 0.241 84.2 9.45 Asia 8320 9550000 0.149 79.2 2.55 Asia 23400 17800000 0.212 71.8 15 Asia 2890 49100000 65.3 0.35 Africa 2050 113000 62.2 0.587 Oceania 70100 3960000 83.1 24.8 Asia 3300 6070000 72.5 1.59 Asia 6000 6850000 67.1 2.56 Asia 23700 1970000 0.245 0.264 75 3.67 Europe 11800 6710000 78 3.64 Asia 2940 2080000 52.5 1.21 Africa 1180 4590000 0.145 63.9 0.296 Africa 13900 6490000 72.4 7.72 Africa 28000 2890000 0.195 0.179 74.9 4.54 Europe 93900 579000 81.6 15.7 Europe 1400 24900000 63.2 0.156 Africa 1140 17200000 0.0816 0.24 62.4 0.0735 Africa 26100 30700000 0.161 0.211 74.7 8.05 Asia 13000 476000 0.161 81.3 3.04 Asia 1970 18000000 0.0934 0.205 61.6 0.173 Africa 35600 436000 81 3.24 Europe 3430 57700 64.3 2.48 Oceania 3690 4160000 0.102 0.142 70.2 0.552 Africa 19600 1260000 0.141 0.313 74.5 3.45 Africa 17800 1.23E+08 0.138 0.144 75.9 3.94 North America 3120 110000 67.2 1.3 Oceania 5950 4070000 0.325 0.305 72.4 1.21 Europe 59500 38100 0.0331 0.0495 Europe 11200 3060000 0.166 68.8 8.29 Asia 15700 627000 76.4 3.22 Europe 7310 35100000 73.7 1.74 Africa 1170 27800000 57.3 0.278 Africa 5290 53000000 68.3 0.471 Asia 10400 2360000 66.2 1.78 Africa 13000 10500 4.55 Oceania 2450 27300000 70.6 0.325 Asia 47700 17000000 0.167 0.231 81.5 9.81 Europe 35700 4660000 0.203 0.211 81.7 7.36 Oceania 5000 6300000 78.5 0.875 North America 912 20800000 0.165 0.206 61.9 0.0967 Africa 5450 1.86E+08 63.9 0.634 Africa 1720 25300000 71.8 1.09 Asia 13100 2080000 76.3 3.39 Europe 64200 5250000 0.217 0.268 82.4 8.47 Europe 39200 4480000 0.318 0.35 76.9 14 Asia 4610 2.04E+08 66.4 0.967 Asia 17200 17700 12.6 Oceania 4600 4640000 0.698 Asia 21500 4040000 79.1 2.59 North America 3900 8270000 58.2 0.899 Oceania 11400 6780000 0.117 0.119 75.9 1.06 South America 12400 30900000 0.115 0.139 80.2 1.82 South America 7210 1.04E+08 69.5 1.15 Asia 26100 38000000 0.231 0.226 77.8 8.51 Europe 27200 10300000 81.5 4.88 Europe 114000 2650000 80.1 38.5 Asia 21800 19800000 0.0783 0.152 75.2 3.83 Europe 24400 1.45E+08 71.8 11.1 Asia 1830 11700000 0.0547 0.371 68 0.0898 Africa 5940 195000 0.0897 0.13 72.8 1.26 Oceania 56700 33500 Europe 2950 203000 70.6 0.595 Africa 50200 32400000 76.6 19.5 Asia 3100 15000000 0.118 0.114 67.8 0.693 Africa 14900 8850000 75.5 5.09 Europe 25600 95700 0.142 0.153 73.5 6.32 Africa 1380 7330000 0.0566 0.0551 59.8 0.127 Africa 84700 5650000 84.7 6.64 Asia 29200 5440000 0.208 0.201 77.2 6.42 Europe 29900 2070000 0.236 0.23 81 6.95 Europe 2110 619000 63.1 0.272 Oceania 625 14200000 58.5 0.0455 Africa 12200 56200000 64.4 8.46 Africa 35000 51000000 0.278 0.282 82.5 12.1 Asia 1680 10800000 0.0458 0.119 59.4 0.159 Africa 33400 46600000 0.171 0.189 82.9 5.59 Europe 11400 21000000 0.144 0.141 77.2 1.1 Asia 27600 51600 0.176 4.62 North America 12000 180000 0.165 0.249 75.5 2.3 North America 10600 109000 0.179 0.204 72.2 2.01 North America 4360 39800000 69.8 0.491 Africa 13500 565000 71.9 3.05 South America 46300 9840000 0.217 0.238 82.4 4.33 Europe 57600 8380000 0.248 83.8 4.68 Europe 3090 17500000 67.4 1.63 Asia 2780 8660000 70.2 0.596 Asia 2710 53000000 66.2 0.219 Africa 15700 69000000 78 4.07 Asia 7570 1220000 70.7 0.406 Asia 1500 7510000 0.162 63.5 0.408 Africa 5640 101000 71.6 1.27 Oceania 29300 1380000 74.3 31.8 North America 10900 11300000 78.1 2.57 Africa 23700 79800000 0.13 0.135 78.6 5.03 Asia 15600 5660000 70 12.4 Asia 3450 11200 0.979 Oceania 1770 39600000 65.2 0.136 Africa 7680 44700000 0.263 0.256 69.6 5.24 Europe 67000 9360000 73.2 21.7 Asia 39400 66300000 0.242 0.212 80.9 6.04 Europe 53600 3.23E+08 0.199 0.221 78.6 16.4 North America 20200 3420000 0.124 0.159 77 1.95 South America 5880 31400000 70.1 2.9 Asia 2780 278000 64.6 0.527 Oceania 15200 29900000 75.3 5.47 South America 5900 93600000 74.4 1.96 Asia 2620 27200000 68.1 0.377 Asia 3700 16400000 0.129 62.8 0.296 Africa 2490 14000000 60.5 0.771 Africa

Step by Step Solution

There are 3 Steps involved in it

Step: 1

blur-text-image

Get Instant Access to Expert-Tailored Solutions

See step-by-step solutions with expert insights and AI powered tools for academic success

Step: 2

blur-text-image

Step: 3

blur-text-image

Ace Your Homework with AI

Get the answers you need in no time with our AI-driven, step-by-step assistance

Get Started

Recommended Textbook for

Organizational Behavior

Authors: Robert Kreitner, Angelo Kinicki

9th Edition

007353045X, 978-0073530451

More Books

Students also viewed these Mathematics questions

Question

Be straight in the back without blowing out the chest

Answered: 1 week ago

Question

Wear as little as possible

Answered: 1 week ago

Question

Be relaxed at the hips

Answered: 1 week ago