Question
(C++) create a project with all the headers(graphType.h, linkedList.h, linkedQueue.h, queueADT.h, unorderedLinkedList.h) linked with this assignment. Implement the following methods(methods in graphType.h(//To DO)): -depthFirst: perform
(C++) create a project with all the headers(graphType.h, linkedList.h, linkedQueue.h, queueADT.h, unorderedLinkedList.h) linked with this assignment. Implement the following methods(methods in graphType.h(//To DO)):
-depthFirst: perform a depth-first traversal of the graph. Assuming visiting a node in the graph means to output its contents. Pseudocode: Depth first traversal at a given node, v: 1.Mark node v as visited 2. Visit the node 3. for each vertex u adjacent to v, if u is not visited, start the depth first traversal at u. ( This is a recursive algorithm)
-breadthFirst: perform a breadth-first traversal of the graph. Assuming visiting a node in the graph means to output its contents. Pseudocode: Breadth first traversal of a graph.( similar to traversing a binary tree level by level, nodes at each level are visited from left to right) 1.Starting at the first vertex, the graph is traversed as much as possible, then go to next vertex not yet visited. 2. Use a queue to implement the breadth first search algorithm.
-cycleFinder: traverse the graph and determine the node(s) that start cycle(s) in the graph. Use theunordered_map data structure in the STL to keep track of the nodes that have been visited.
Important: solutions for all three methods must be heavily-commented explaining how it works.
Testing/Client
Write a simple client to test the three methods. Use a single graph with a single cycle to test all three methods.
Below are the header files for the project
//graphType.h
#ifndef H_graph #define H_graph
#include #include #include #include "linkedList.h" #include "unorderedLinkedList.h" #include "linkedQueue.h"
using namespace std;
class graphType { public: bool isEmpty() const; //Function to determine whether the graph is empty. //Postcondition: Returns true if the graph is empty; // otherwise, returns false.
void createGraph(); //Function to create a graph. //Postcondition: The graph is created using the // adjacency list representation.
void clearGraph(); //Function to clear graph. //Postcondition: The memory occupied by each vertex // is deallocated.
void printGraph() const; //Function to print graph. //Postcondition: The graph is printed.
void depthFirstTraversal(); //Function to perform the depth first traversal of //the entire graph. //Postcondition: The vertices of the graph are printed // using depth first traversal algorithm.
void breadthFirstTraversal(); //Function to perform the breadth first traversal of //the entire graph. //Postcondition: The vertices of the graph are printed // using breadth first traversal algorithm.
void cycleFinder();
graphType(int size = 0); //Constructor //Postcondition: gSize = 0; maxSize = size; // graph is an array of pointers to linked // lists.
~graphType(); //Destructor //The storage occupied by the vertices is deallocated.
protected: int maxSize; //maximum number of vertices int gSize; //current number of vertices unorderedLinkedList *graph; //array to create //adjacency lists
private: void dft(int v, bool visited[]); //Function to perform the depth first traversal of //the graph at a node specified by the parameter vertex. //This function is used by the public member functions //depthFirstTraversal and dftAtVertex. //Postcondition: Starting at vertex, the vertices are // printed using depth first traversal // algorithm. };
bool graphType::isEmpty() const { return (gSize == 0); }
void graphType::createGraph() { ifstream infile; char fileName[50];
int index; int vertex; int adjacentVertex;
if (gSize != 0) //if the graph is not empty, make it empty clearGraph();
cout << "Enter input file name: "; cin >> fileName; cout << endl;
infile.open(fileName);
if (!infile) { cout << "Cannot open input file." << endl; return; }
infile >> gSize; //get the number of vertices
for (index = 0; index < gSize; index++) { infile >> vertex; infile >> adjacentVertex;
while (adjacentVertex != -999) { graph[vertex].insertLast(adjacentVertex); infile >> adjacentVertex; } //end while } // end for
infile.close(); } //end createGraph
void graphType::clearGraph() { int index;
for (index = 0; index < gSize; index++) graph[index].destroyList();
gSize = 0; } //end clearGraph
void graphType::printGraph() const { int index;
for (index = 0; index < gSize; index++) { cout << index << " "; graph[index].print(); cout << endl; }
cout << endl; } //end printGraph
void graphType::depthFirstTraversal() { //TODO } //end depthFirstTraversal
void graphType::dft(int v, bool visited[]) { //TODO } //end dft
void graphType::breadthFirstTraversal() { //TODO } //end breadthFirstTraversal
void graphType::cycleFinder()
{
//TODO
}//end cycleFinder
//Constructor graphType::graphType(int size) { maxSize = size; gSize = 0; graph = new unorderedLinkedList[size]; }
//Destructor graphType::~graphType() { clearGraph(); }
#endif
//linkedList.h
#ifndef H_LinkedListType #define H_LinkedListType #include #include using namespace std;
//Definition of the node
template struct nodeType { Type info; nodeType *link; };
template class linkedListIterator { public: linkedListIterator(); //Default constructor //Postcondition: current = nullptr;
linkedListIterator(nodeType *ptr); //Constructor with a parameter. //Postcondition: current = ptr;
Type operator*(); //Function to overload the dereferencing operator *. //Postcondition: Returns the info contained in the node.
linkedListIterator operator++(); //Overload the pre-increment operator. //Postcondition: The iterator is advanced to the next // node.
bool operator==(const linkedListIterator& right) const; //Overload the equality operator. //Postcondition: Returns true if this iterator is equal to // the iterator specified by right, // otherwise it returns the value false.
bool operator!=(const linkedListIterator& right) const; //Overload the not equal to operator. //Postcondition: Returns true if this iterator is not // equal to the iterator specified by // right; otherwise it returns the value // false.
private: nodeType *current; //pointer to point to the current //node in the linked list };
template linkedListIterator::linkedListIterator() { current = nullptr; }
template linkedListIterator:: linkedListIterator(nodeType *ptr) { current = ptr; }
template Type linkedListIterator::operator*() { return current->info; }
template linkedListIterator linkedListIterator::operator++() { current = current->link;
return *this; }
template bool linkedListIterator::operator== (const linkedListIterator& right) const { return (current == right.current); }
template bool linkedListIterator::operator!= (const linkedListIterator& right) const { return (current != right.current); }
//***************** class linkedListType ****************
template class linkedListType { public: const linkedListType& operator= (const linkedListType&); //Overload the assignment operator.
void initializeList(); //Initialize the list to an empty state. //Postcondition: first = nullptr, last = nullptr, count = 0;
bool isEmptyList() const; //Function to determine whether the list is empty. //Postcondition: Returns true if the list is empty, // otherwise it returns false.
void print() const; //Function to output the data contained in each node. //Postcondition: none
int length() const; //Function to return the number of nodes in the list. //Postcondition: The value of count is returned.
void destroyList(); //Function to delete all the nodes from the list. //Postcondition: first = nullptr, last = nullptr, count = 0;
Type front() const; //Function to return the first element of the list. //Precondition: The list must exist and must not be // empty. //Postcondition: If the list is empty, the program // terminates; otherwise, the first // element of the list is returned.
Type back() const; //Function to return the last element of the list. //Precondition: The list must exist and must not be // empty. //Postcondition: If the list is empty, the program // terminates; otherwise, the last // element of the list is returned.
virtual bool search(const Type& searchItem) const = 0; //Function to determine whether searchItem is in the list. //Postcondition: Returns true if searchItem is in the // list, otherwise the value false is // returned.
virtual void insertFirst(const Type& newItem) = 0; //Function to insert newItem at the beginning of the list. //Postcondition: first points to the new list, newItem is // inserted at the beginning of the list, // last points to the last node in the list, // and count is incremented by 1.
virtual void insertLast(const Type& newItem) = 0; //Function to insert newItem at the end of the list. //Postcondition: first points to the new list, newItem // is inserted at the end of the list, // last points to the last node in the list, // and count is incremented by 1.
virtual void deleteNode(const Type& deleteItem) = 0; //Function to delete deleteItem from the list. //Postcondition: If found, the node containing // deleteItem is deleted from the list. // first points to the first node, last // points to the last node of the updated // list, and count is decremented by 1.
linkedListIterator begin(); //Function to return an iterator at the begining of the //linked list. //Postcondition: Returns an iterator such that current is // set to first.
linkedListIterator end(); //Function to return an iterator one element past the //last element of the linked list. //Postcondition: Returns an iterator such that current is // set to nullptr.
linkedListType(); //default constructor //Initializes the list to an empty state. //Postcondition: first = nullptr, last = nullptr, count = 0;
linkedListType(const linkedListType& otherList); //copy constructor
~linkedListType(); //destructor //Deletes all the nodes from the list. //Postcondition: The list object is destroyed.
protected: int count; //variable to store the number of //elements in the list nodeType *first; //pointer to the first node of the list nodeType *last; //pointer to the last node of the list
private: void copyList(const linkedListType& otherList); //Function to make a copy of otherList. //Postcondition: A copy of otherList is created and // assigned to this list. };
template bool linkedListType::isEmptyList() const { return(first == nullptr); }
template linkedListType::linkedListType() //default constructor { first = nullptr; last = nullptr; count = 0; }
template void linkedListType::destroyList() { nodeType *temp; //pointer to deallocate the memory //occupied by the node while (first != nullptr) //while there are nodes in the list { temp = first; //set temp to the current node first = first->link; //advance first to the next node delete temp; //deallocate the memory occupied by temp } last = nullptr; //initialize last to nullptr; first has already //been set to nullptr by the while loop count = 0; }
template void linkedListType::initializeList() { destroyList(); //if the list has any nodes, delete them }
template void linkedListType::print() const { nodeType *current; //pointer to traverse the list
current = first; //set current so that it points to //the first node while (current != nullptr) //while more data to print { cout << current->info << " "; current = current->link; } }//end print
template int linkedListType::length() const { return count; } //end length
template Type linkedListType::front() const { assert(first != nullptr);
return first->info; //return the info of the first node }//end front
template Type linkedListType::back() const { assert(last != nullptr);
return last->info; //return the info of the last node }//end back
template linkedListIterator linkedListType::begin() { linkedListIterator temp(first);
return temp; }
template linkedListIterator linkedListType::end() { linkedListIterator temp(nullptr);
return temp; }
template void linkedListType::copyList (const linkedListType& otherList) { nodeType *newNode; //pointer to create a node nodeType *current; //pointer to traverse the list
if (first != nullptr) //if the list is nonempty, make it empty destroyList();
if (otherList.first == nullptr) //otherList is empty { first = nullptr; last = nullptr; count = 0; } else { current = otherList.first; //current points to the //list to be copied count = otherList.count;
//copy the first node first = new nodeType; //create the node
first->info = current->info; //copy the info first->link = nullptr; //set the link field of //the node to nullptr last = first; //make last point to the //first node current = current->link; //make current point to //the next node
//copy the remaining list while (current != nullptr) { newNode = new nodeType; //create a node newNode->info = current->info; //copy the info newNode->link = nullptr; //set the link of //newNode to nullptr last->link = newNode; //attach newNode after last last = newNode; //make last point to //the actual last node current = current->link; //make current point //to the next node }//end while }//end else }//end copyList
template linkedListType::~linkedListType() //destructor { destroyList(); }//end destructor
template linkedListType::linkedListType (const linkedListType& otherList) { first = nullptr; copyList(otherList); }//end copy constructor
//overload the assignment operator template const linkedListType& linkedListType::operator= (const linkedListType& otherList) { if (this != &otherList) //avoid self-copy { copyList(otherList); }//end else
return *this; }
#endif
//linkedQueue.h
//Header file linkedQueue.h #ifndef H_linkedQueue #define H_linkedQueue
#include #include #include "queueADT.h"
using namespace std;
template class linkedQueueType: public queueADT { public: const linkedQueueType& operator= (const linkedQueueType&); //Overload the assignment operator.
bool isEmptyQueue() const; //Function to determine whether the queue is empty. //Postcondition: Returns true if the queue is empty, // otherwise returns false.
bool isFullQueue() const; //Function to determine whether the queue is full. //Postcondition: Returns true if the queue is full, // otherwise returns false.
void initializeQueue(); //Function to initialize the queue to an empty state. //Postcondition: queueFront = nullptr; queueRear = nullptr
Type front() const; //Function to return the first element of the queue. //Precondition: The queue exists and is not empty. //Postcondition: If the queue is empty, the program // terminates; otherwise, the first // element of the queue is returned.
Type back() const; //Function to return the last element of the queue. //Precondition: The queue exists and is not empty. //Postcondition: If the queue is empty, the program // terminates; otherwise, the last // element of the queue is returned.
void addQueue(const Type& queueElement); //Function to add queueElement to the queue. //Precondition: The queue exists and is not full. //Postcondition: The queue is changed and queueElement // is added to the queue.
void deleteQueue(); //Function to remove the first element of the queue. //Precondition: The queue exists and is not empty. //Postcondition: The queue is changed and the first // element is removed from the queue.
linkedQueueType(); //Default constructor
linkedQueueType(const linkedQueueType& otherQueue); //Copy constructor
~linkedQueueType(); //Destructor
private: nodeType *queueFront; //pointer to the front of //the queue nodeType *queueRear; //pointer to the rear of //the queue };
//Default constructor template linkedQueueType::linkedQueueType() { queueFront = nullptr; //set front to nullptr queueRear = nullptr; //set rear to nullptr } //end default constructor
template bool linkedQueueType::isEmptyQueue() const { return(queueFront == nullptr); } //end
template bool linkedQueueType::isFullQueue() const { return false; } //end isFullQueue
template void linkedQueueType::initializeQueue() { nodeType *temp;
while (queueFront!= nullptr) //while there are elements left //in the queue { temp = queueFront; //set temp to point to the //current node queueFront = queueFront->link; //advance first to //the next node delete temp; //deallocate memory occupied by temp }
queueRear = nullptr; //set rear to nullptr } //end initializeQueue
template void linkedQueueType::addQueue(const Type& newElement) { nodeType *newNode;
newNode = new nodeType; //create the node
newNode->info = newElement; //store the info newNode->link = nullptr; //initialize the link field to nullptr
if (queueFront == nullptr) //if initially the queue is empty { queueFront = newNode; queueRear = newNode; } else //add newNode at the end { queueRear->link = newNode; queueRear = queueRear->link; } }//end addQueue
template Type linkedQueueType::front() const { assert(queueFront != nullptr); return queueFront->info; } //end front
template Type linkedQueueType::back() const { assert(queueRear!= nullptr); return queueRear->info; } //end back
template void linkedQueueType::deleteQueue() { nodeType *temp; if (!isEmptyQueue()) { temp = queueFront; //make temp point to the //first node queueFront = queueFront->link; //advance queueFront
delete temp; //delete the first node
if (queueFront == nullptr) //if after deletion the //queue is empty queueRear = nullptr; //set queueRear to nullptr } else cout << "Cannot remove from an empty queue" << endl; }//end deleteQueue
//Destructor template linkedQueueType::~linkedQueueType() { //Write the definition of the destructor } //end destructor
template const linkedQueueType& linkedQueueType::operator= (const linkedQueueType& otherQueue) { //Write the definition of to overload the assignment operator
} //end assignment operator
//copy constructor template linkedQueueType::linkedQueueType (const linkedQueueType& otherQueue) { //Write the definition of the copy constructor }//end copy constructor
#endif
//queueADT.h
//Header file: stackADT.h #ifndef H_queueADT #define H_queueADT
template class queueADT { public: virtual bool isEmptyQueue() const = 0; //Function to determine whether the queue is empty. //Postcondition: Returns true if the queue is empty, // otherwise returns false.
virtual bool isFullQueue() const = 0; //Function to determine whether the queue is full. //Postcondition: Returns true if the queue is full, // otherwise returns false.
virtual void initializeQueue() = 0; //Function to initialize the queue to an empty state. //Postcondition: The queue is empty.
virtual Type front() const = 0; //Function to return the first element of the queue. //Precondition: The queue exists and is not empty. //Postcondition: If the queue is empty, the program // terminates; otherwise, the first // element of the queue is returned.
virtual Type back() const = 0; //Function to return the last element of the queue. //Precondition: The queue exists and is not empty. //Postcondition: If the queue is empty, the program // terminates; otherwise, the last // element of the queue is returned.
virtual void addQueue(const Type& queueElement) = 0; //Function to add queueElement to the queue. //Precondition: The queue exists and is not full. //Postcondition: The queue is changed and queueElement // is added to the queue.
virtual void deleteQueue() = 0; //Function to remove the first element of the queue. //Precondition: The queue exists and is not empty. //Postcondition: The queue is changed and the first // element is removed from the queue. };
#endif
//unorderedLinkedList.h
#ifndef H_UnorderedLinkedList #define H_UnorderedLinkedList #include "linkedList.h"
using namespace std; template class unorderedLinkedList: public linkedListType { public: bool search(const Type& searchItem) const; //Function to determine whether searchItem is in the list. //Postcondition: Returns true if searchItem is in the // list, otherwise the value false is // returned.
void insertFirst(const Type& newItem); //Function to insert newItem at the beginning of the list. //Postcondition: first points to the new list, newItem is // inserted at the beginning of the list, // last points to the last node in the // list, and count is incremented by 1.
void insertLast(const Type& newItem); //Function to insert newItem at the end of the list. //Postcondition: first points to the new list, newItem // is inserted at the end of the list, // last points to the last node in the // list, and count is incremented by 1.
void deleteNode(const Type& deleteItem); //Function to delete deleteItem from the list. //Postcondition: If found, the node containing // deleteItem is deleted from the list. // first points to the first node, last // points to the last node of the updated // list, and count is decremented by 1. };
template bool unorderedLinkedList:: search(const Type& searchItem) const { nodeType *current; //pointer to traverse the list bool found = false; current = first; //set current to point to the first //node in the list
while (current != nullptr && !found) //search the list if (current->info == searchItem) //searchItem is found found = true; else current = current->link; //make current point to //the next node return found; }//end search
template void unorderedLinkedList::insertFirst(const Type& newItem) { nodeType *newNode; //pointer to create the new node
newNode = new nodeType; //create the new node
newNode->info = newItem; //store the new item in the node newNode->link = first; //insert newNode before first first = newNode; //make first point to the //actual first node count++; //increment count
if (last == nullptr) //if the list was empty, newNode is also //the last node in the list last = newNode; }//end insertFirst
template void unorderedLinkedList::insertLast(const Type& newItem) { nodeType *newNode; //pointer to create the new node
newNode = new nodeType; //create the new node
newNode->info = newItem; //store the new item in the node newNode->link = nullptr; //set the link field of newNode //to nullptr
if (first == nullptr) //if the list is empty, newNode is //both the first and last node { first = newNode; last = newNode; count++; //increment count } else //the list is not empty, insert newNode after last { last->link = newNode; //insert newNode after last last = newNode; //make last point to the actual //last node in the list count++; //increment count } }//end insertLast
template void unorderedLinkedList::deleteNode(const Type& deleteItem) { nodeType *current; //pointer to traverse the list nodeType *trailCurrent; //pointer just before current bool found;
if (first == nullptr) //Case 1; the list is empty. cout << "Cannot delete from an empty list." << endl; else { if (first->info == deleteItem) //Case 2 { current = first; first = first->link; count--; if (first == nullptr) //the list has only one node last = nullptr; delete current; } else //search the list for the node with the given info { found = false; trailCurrent = first; //set trailCurrent to point //to the first node current = first->link; //set current to point to //the second node
while (current != nullptr && !found) { if (current->info != deleteItem) { trailCurrent = current; current = current-> link; } else found = true; }//end while
if (found) //Case 3; if found, delete the node { trailCurrent->link = current->link; count--;
if (last == current) //node to be deleted //was the last node last = trailCurrent; //update the value //of last delete current; //delete the node from the list } else cout << "The item to be deleted is not in " << "the list." << endl; }//end else }//end else }//end deleteNode
#endif
Step by Step Solution
There are 3 Steps involved in it
Step: 1
Get Instant Access to Expert-Tailored Solutions
See step-by-step solutions with expert insights and AI powered tools for academic success
Step: 2
Step: 3
Ace Your Homework with AI
Get the answers you need in no time with our AI-driven, step-by-step assistance
Get Started