Answered step by step
Verified Expert Solution
Link Copied!

Question

1 Approved Answer

C++ Linked Lists Your program is to create, access, and update two ordered linked lists. Using the provided class implementations, your driver file should create

C++ Linked Lists

Your program is to create, access, and update two ordered linked lists. Using the provided class implementations, your driver file should create one list using the integer type and another using the string type. After creating the two lists, use the input from the intInsert.dat and strInsert.dat files to add data to the ordered linked lists. These files have one data item per line. Insert the data items to their respective list objects.

Once data has been added to the two lists, you will utilize the search function provided by the class to look for certain items in the lists. The intSearch.dat and strSearch.dat files have one data item per line. Search the respective lists for each data item in these files. Your program should display whether or not the item is found in the list.

For example, if your integer list object contains 5, 15, and 25 and the search file contains 7 and 25, your program should output:

7 was NOT found in the list

25 was found in the list

You are also required to write an additional function that will be added in the provided linked list class definition. Write a function that will concatenate all the items in the list. You can call the function concat() for short. For a list of integers, this function should return the sum of all items in the list. For a list of strings, it should return a string made up of all the items combined into a longer string.

For example, if your integer list object contains 5, 15, and 25, the concat() function should return 45. If your string list object contains hello and world, the concat() function should return helloworld.

Your program should display the results of the concatenation function call to the screen for both lists. Hint: You should be able to get this functionality for numerical types and for strings by using the += operator. Recall that this operator is overloaded in the string class to provide concatenation.

----------------intInsert.dat----------

5 50 37 400 25 31

----------intSearch.dat---------

206 500 400 84 25 62

-------strInsert.dat---------

hello world basket coffee process walk

-----------strSearch.dat----------

jog run hello cat coffee java

--------linkedListIterator.h------

#ifndef __Lab__linkedListIterator__

#define __Lab__linkedListIterator__

#include

using namespace std;

//Definition of the node

template

struct nodeType {

Type info;

nodeType *link;

};

template

class linkedListIterator {

public:

linkedListIterator();

//Default constructor

//Postcondition: current = NULL;

linkedListIterator(nodeType *ptr);

//Constructor with a parameter.

//Postcondition: current = ptr;

Type operator*();

//Function to overload the dereferencing operator *.

//Postcondition: Returns the info contained in the node.

linkedListIterator operator++();

//Overload the preincrement operator.

//Postcondition: The iterator is advanced to the next node.

bool operator==(const linkedListIterator& right) const;

//Overload the equality operator.

//Postcondition: Returns true if this iterator is equal to

// the iterator specified by right, otherwise it returns

// false.

bool operator!=(const linkedListIterator& right) const;

//Overload the not equal to operator.

//Postcondition: Returns true if this iterator is not equal to

// the iterator specified by right, otherwise it returns

// false.

private:

nodeType *current; //pointer to point to the current

//node in the linked list

};

template

linkedListIterator::linkedListIterator() {

current = NULL;

}

template

linkedListIterator::linkedListIterator(nodeType *ptr) {

current = ptr;

}

template

Type linkedListIterator::operator*() {

return current->info;

}

template

linkedListIterator linkedListIterator::operator++() {

current = current->link;

return *this;

}

template

bool linkedListIterator::operator==(const linkedListIterator& right) const {

return (current == right.current);

}

template

bool linkedListIterator::operator!=(const linkedListIterator& right) const {

return (current != right.current);

}

#endif /* defined(__Lab__linkedListIterator__) */

---------------------linkedListType.h-----------------------------------------------

#ifndef __Lab__linkedListType__

#define __Lab__linkedListType__

#include "linkedListIterator.h"

#include

template

class linkedListType {

public:

const linkedListType& operator=(const linkedListType&);

//Overload the assignment operator.

void initializeList();

//Initialize the list to an empty state.

//Postcondition: first = NULL, last = NULL, count = 0;

bool isEmptyList() const;

//Function to determine whether the list is empty.

//Postcondition: Returns true if the list is empty, otherwise

// it returns false.

void print() const;

//Function to output the data contained in each node.

//Postcondition: none

int length() const;

//Function to return the number of nodes in the list.

//Postcondition: The value of count is returned.

void destroyList();

//Function to delete all the nodes from the list.

//Postcondition: first = NULL, last = NULL, count = 0;

Type front() const;

//Function to return the first element of the list.

//Precondition: The list must exist and must not be empty.

//Postcondition: If the list is empty, the program terminates;

// otherwise, the first element of the list is returned.

Type back() const;

//Function to return the last element of the list.

//Precondition: The list must exist and must not be empty.

//Postcondition: If the list is empty, the program

// terminates; otherwise, the last

// element of the list is returned.

virtual bool search(const Type& searchItem) const = 0;

//Function to determine whether searchItem is in the list.

//Postcondition: Returns true if searchItem is in the list,

// otherwise the value false is returned.

virtual void insertFirst(const Type& newItem) = 0;

//Function to insert newItem at the beginning of the list.

//Postcondition: first points to the new list, newItem is

// inserted at the beginning of the list, last points to

// the last node in the list, and count is incremented by

// 1.

virtual void insertLast(const Type& newItem) = 0;

//Function to insert newItem at the end of the list.

//Postcondition: first points to the new list, newItem is

// inserted at the end of the list, last points to the

// last node in the list, and count is incremented by 1.

virtual void deleteNode(const Type& deleteItem) = 0;

//Function to delete deleteItem from the list.

//Postcondition: If found, the node containing deleteItem is

// deleted from the list. first points to the first node,

// last points to the last node of the updated list, and

// count is decremented by 1.

linkedListIterator begin();

//Function to return an iterator at the beginning of the

//linked list.

//Postcondition: Returns an iterator such that current is set

// to first.

linkedListIterator end();

//Function to return an iterator one element past the

//last element of the linked list.

//Postcondition: Returns an iterator such that current is set // to NULL.

linkedListType();

//default constructor

//Initializes the list to an empty state.

//Postcondition: first = NULL, last = NULL, count = 0;

linkedListType(const linkedListType& otherList);

//copy constructor

~linkedListType();

//destructor

//Deletes all the nodes from the list.

//Postcondition: The list object is destroyed.

protected:

int count; //variable to store the number of list elements

nodeType *first; //pointer to the first node of the list

nodeType *last; //pointer to the last node of the list

private:

void copyList(const linkedListType& otherList);

//Function to make a copy of otherList.

//Postcondition: A copy of otherList is created and assigned

// to this list.

};

//default constructor

template

linkedListType::linkedListType() {

first = NULL;

last = NULL;

count = 0;

}

template

void linkedListType::destroyList() {

nodeType *temp; //pointer to deallocate the memory occupied by the node

while (first != NULL) {

//while there are nodes in the list

temp = first;

first = first->link; //advance first to the next node delete temp;

delete temp; //deallocate the memory occupied by temp

}

last = NULL; //initialize last to NULL; first has already been set to NULL by the while loop

count = 0;

}

template

bool linkedListType::isEmptyList() const {

return (first == NULL);

}

template

void linkedListType::initializeList() {

destroyList(); //if the list has any nodes, delete them

}

template

void linkedListType::print() const {

nodeType *current;

//pointer to traverse the list

current = first;

//set current point to the first node while (current != NULL)

//while more data to print

while (current != NULL) { //while more data to print{

cout << current->info << " ";

current = current->link;

}

}//end print

template

int linkedListType::length() const {

return count;

}

template

Type linkedListType::front() const {

assert(first != NULL);

return first->info; //return the info of the first node

}//end front

template

Type linkedListType::back() const {

assert(last != NULL);

return last->info; //return the info of the last node

}//end back

template

linkedListIterator linkedListType::begin() {

linkedListIterator temp(first); return temp;

}

template

linkedListIterator linkedListType::end() {

linkedListIterator temp(NULL); return temp;

}

template

void linkedListType::copyList(const linkedListType& otherList) {

nodeType *newNode; //pointer to create a node

nodeType *current; //pointer to traverse the list

if (first != NULL) // if otherlist is not empty, make it empty

destroyList();

if (otherList.first == NULL) { // otherlist is empty

first = NULL;

last = NULL;

count = 0;

}

else {

current = otherList.first; //current points to list to be copied

count = otherList.count;

//copy the first node

first = new nodeType; //create the node

first->info = current->info; // Copy the info

first->link = NULL; //set the link field of the node to null

last = first; //make last point to the first node

current = current->link; //make current point to the next

//copy the remaining list

while (current != NULL) {

newNode = new nodeType; //create a node

newNode->info = current->info; //copy the info

newNode->link = NULL; //set the link of newNode to NULL

last->link = newNode;

last = newNode;

current = current->link; //make current point to the next node

}//end while

}//end else

}//end copyList

//destructor

template linkedListType::~linkedListType() {

destroyList();

}

//end copy constructor

template linkedListType::linkedListType

(const linkedListType& otherList) {

first = NULL;

copyList(otherList);

}

template

const linkedListType& linkedListType::operator=(const linkedListType& otherList) {

if (this != &otherList) { //avoid self-copy

copyList(otherList);

}

return *this;

}

#endif /* defined(__Lab__linkedListType__) *

------------------------------------------orderedLinkedList.h----------------------------------------------

#ifndef __Lab__orderedLinkedList__

#define __Lab__orderedLinkedList__

#include "linkedListType.h"

template

class orderedLinkedList: public linkedListType {

public:

// Get parent variables

using linkedListType::count;

using linkedListType::first;

using linkedListType::last;

bool search(const Type& searchItem) const;

//Function to determine whether searchItem is in the list.

//Postcondition: Returns true if searchItem is in the list,

// otherwise the value false is returned.

void insert(const Type& newItem);

//Function to insert newItem in the list.

//Postcondition: first points to the new list, newItem

// is inserted at the proper place in the list, and

// count is incremented by 1.

void insertFirst(const Type& newItem);

//Function to insert newItem at the beginning of the list.

//Postcondition: first points to the new list, newItem is

// inserted at the beginning of the list, last points to the

// last node in the list, and count is incremented by 1.

void insertLast(const Type& newItem);

//Function to insert newItem at the end of the list.

//Postcondition: first points to the new list, newItem is

// inserted at the end of the list, last points to the

// last node in the list, and count is incremented by 1.

void deleteNode(const Type& deleteItem);

//Function to delete deleteItem from the list.

//Postcondition: If found, the node containing deleteItem is

// deleted from the list; first points to the first node

// of the new list, and count is decremented by 1. If

// deleteItem is not in the list, an appropriate message

// is printed.

};

template

bool orderedLinkedList::search(const Type& searchItem) const {

bool found = false;

nodeType *current; //pointer to traverse the list

current = first; //start the search at the first node

while (current != NULL && !found)

if (current->info >= searchItem)

found = true;

else

current = current->link;

if (found)

found = (current->info == searchItem); //test for equality

return found;

}//end search

template

void orderedLinkedList::insert(const Type& newItem) {

nodeType *current; //pointer to traverse the list

nodeType *trailCurrent; //pointer just before current

nodeType *newNode; //pointer to create a node

bool found;

newNode = new nodeType; //create the node

newNode->info = newItem; //store newItem in the node

newNode->link = NULL; //set the link field of the node

//to NULL

if (first == NULL) { //Case 1

first = newNode;

last = newNode;

count++;

}

else {

current = first;

found = false;

while (current != NULL && !found) //search the list

if (current->info >= newItem)

found = true;

else {

trailCurrent = current;

current = current->link;

}

if (current == first) { //Case 2

newNode->link = first;

first = newNode;

count++;

}

else { //Case 3

trailCurrent->link = newNode;

newNode->link = current;

if (current == NULL)

last = newNode;

count++;

}

}//end else

}//end insert

template

void orderedLinkedList::insertFirst(const Type& newItem) {

insert(newItem);

}//end insertFirst

template

void orderedLinkedList::insertLast(const Type& newItem) {

insert(newItem);

}//end insertLast

template

void orderedLinkedList::deleteNode(const Type& deleteItem) {

nodeType *current; //pointer to traverse the list

nodeType *trailCurrent; //pointer just before current

bool found;

if (first == NULL) //Case 1

cout << "Cannot delete from an empty list." << endl;

else {

current = first;

found = false;

while (current != NULL && !found) { //search the list

if (current->info >= deleteItem)

found = true;

else {

trailCurrent = current;

current = current->link;

}

}

if (current == NULL) //Case 4

cout << "The item to be deleted is not in the list." << endl;

else {

if (current->info == deleteItem) { //the item to be deleted is in the list

if (first == current) { //Case 2

first = first->link;

if (first == NULL)

last = NULL;

delete current;

}

else { //Case 3

trailCurrent->link = current->link;

if (current == last)

last = trailCurrent;

delete current;

}

count--;

}

else

cout << "The item to be deleted is not in the " << "list." << endl;

}

}

}//end deleteNode

#endif /* defined(__Lab__orderedLinkedList__) */

Step by Step Solution

There are 3 Steps involved in it

Step: 1

blur-text-image

Get Instant Access to Expert-Tailored Solutions

See step-by-step solutions with expert insights and AI powered tools for academic success

Step: 2

blur-text-image

Step: 3

blur-text-image

Ace Your Homework with AI

Get the answers you need in no time with our AI-driven, step-by-step assistance

Get Started

Recommended Textbook for

Mastering Real Time Analytics In Big Data A Comprehensive Guide For Everyone

Authors: Lennox Mark

1st Edition

B0CPTC9LY9, 979-8869045706

More Books

Students also viewed these Databases questions

Question

be able to statistically compare survival curves.

Answered: 1 week ago

Question

1. Explain how business strategy affects HR strategy.

Answered: 1 week ago