Question
C++ program Using the linked approach implement the BST ADT, implement only the following functions in the BSTree.cpp: - constructor, copy constructor, assignment operator, destructor
C++ program
Using the linked approach implement the BST ADT, implement only the following functions in the BSTree.cpp:
- constructor, copy constructor, assignment operator, destructor
- insert, retrieve, remove, writeKeys
- clear, isEmpty
Note: Use recursive functions to traverse the tree.
Config.h
* Activate test 'N' by defining the corresponding LAB9_TESTN to have the value 1.
* Deactive test 'N' by setting the value to 0.
*/
#define LAB9_TEST1 0 // Programming Exercise 2: getCount
#define LAB9_TEST2 0 // Programming Exercise 2: getHeight
#define LAB9_TEST3 0 // Programming Exercise 3: writeLessThan
BSTree.h
#ifndef BSTREE_H
#define BSTREE_H
#include
#include
using namespace std;
template < typename DataType, class KeyType > // DataType : tree data item
class BSTree // KeyType : key field
{
public:
// Constructor
BSTree (); // Default constructor
BSTree ( const BSTree& other ); // Copy constructor
BSTree& operator= ( const BSTree& other );
// Overloaded assignment operator
// Destructor
~BSTree ();
// Binary search tree manipulation operations
void insert ( const DataType& newDataItem ); // Insert data item
bool retrieve ( const KeyType& searchKey, DataType& searchDataItem ) const;
// Retrieve data item
bool remove ( const KeyType& deleteKey ); // Remove data item
void writeKeys () const; // Output keys
void clear (); // Clear tree
// Binary search tree status operations
bool isEmpty () const; // Tree is empty
// !! isFull() has been retired. Not very useful in a linked structure.
// Output the tree structure -- used in testing/debugging
void showStructure () const;
// In-lab operations
int getHeight () const; // Height of tree
int getCount () const; // Number of nodes in tree
void writeLessThan ( const KeyType& searchKey ) const; // Output keys < searchKey
protected:
class BSTreeNode // Inner class: facilitator for the BSTree class
{
public:
// Constructor
BSTreeNode ( const DataType &nodeDataItem, BSTreeNode *leftPtr, BSTreeNode *rightPtr );
// Data members
DataType dataItem; // Binary search tree data item
BSTreeNode *left, // Pointer to the left child
*right; // Pointer to the right child
};
// Recursive helpers for the public member functions -- insert
// prototypes of these functions here.
void insertHelper ( BSTreeNode *&p, const DataType &newDataItem );
bool retrieveHelper ( BSTreeNode *p, const KeyType& searchKey, DataType &searchDataItem ) const;
bool removeHelper ( BSTreeNode *&p, const KeyType& deleteKey );
// cutRightmose used in one implementation of remove.
void cutRightmost ( BSTreeNode *&r, BSTreeNode *&delPtr );
void writeKeysHelper ( BSTreeNode *p ) const;
void clearHelper ( BSTreeNode *p );
void showHelper ( BSTreeNode *p, int level ) const;
int getHeightHelper ( BSTreeNode *p ) const;
int getCountHelper ( BSTreeNode *p ) const;
void writeLTHelper ( BSTreeNode *p, const KeyType& searchKey ) const;
void copyTree ( const BSTree &otherTree );
void copyTreeHelper ( BSTreeNode *&p, const BSTreeNode *otherPtr );
// Data member
BSTreeNode *root; // Pointer to the root node
};
#endif // define BSTREE_H
BSTree.cpp
#include "BSTree.h"
template
BSTree::BSTreeNode::BSTreeNode ( const DataType &nodeDataItem, BSTreeNode *leftPtr, BSTreeNode *rightPtr )
{
}
template < typename DataType, class KeyType >
BSTree::BSTree ()
{
root = NULL;
}
template < typename DataType, class KeyType >
BSTree::BSTree ( const BSTree& other )
{
}
template < typename DataType, class KeyType >
BSTree& BSTree:: operator= ( const BSTree& other )
{
}
template < typename DataType, class KeyType >
BSTree::~BSTree ()
{
}
template < typename DataType, class KeyType >
void BSTree::insert ( const DataType& newDataItem )
{
}
template < typename DataType, class KeyType >
bool BSTree::retrieve ( const KeyType& searchKey, DataType& searchDataItem ) const
{
return false;
}
template < typename DataType, class KeyType >
bool BSTree::remove ( const KeyType& deleteKey )
{
return false;
}
template < typename DataType, class KeyType >
void BSTree::writeKeys () const
{
}
template < typename DataType, class KeyType >
void BSTree::clear ()
{
}
template < typename DataType, class KeyType >
bool BSTree::isEmpty () const
{
return false;
}
template < typename DataType, class KeyType >
int BSTree::getHeight () const
{
return -1;
}
template < typename DataType, class KeyType >
int BSTree::getCount () const
{
return -1;
}
template < typename DataType, class KeyType >
void BSTree::writeLessThan ( const KeyType& searchKey ) const
{
}
#include "show9.cpp"
Show9.cpp
#include "BSTree.h"
//-------------------------------------------------------------------- // // Laboratory 9 show9.cpp // // Linked implementation of the showStructure operation for the // Binary Search Tree ADT // //--------------------------------------------------------------------
//--------------------------------------------------------------------
template < typename DataType, typename KeyType > void BSTree:: showStructure () const
// Outputs the keys in a binary search tree. The tree is output // rotated counterclockwise 90 degrees from its conventional // orientation using a "reverse" inorder traversal. This operation is // intended for testing and debugging purposes only.
{ if ( root == 0 ) cout << "Empty tree" << endl; else { cout << endl; showHelper(root,1); cout << endl; } }
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
template < typename DataType, typename KeyType > void BSTree:: showHelper ( BSTreeNode *p, int level ) const
// Recursive helper for showStructure. // Outputs the subtree whose root node is pointed to by p. // Parameter level is the level of this node within the tree.
{ int j; // Loop counter
if ( p != 0 ) { showHelper(p->right,level+1); // Output right subtree for ( j = 0 ; j < level ; j++ ) // Tab over to level cout << "\t"; cout << " " << p->dataItem.getKey(); // Output key if ( ( p->left != 0 ) && // Output "connector" ( p->right != 0 ) ) cout << "<"; else if ( p->right != 0 ) cout << "/"; else if ( p->left != 0 ) cout << "\\"; cout << endl; showHelper(p->left,level+1); // Output left subtree } }
test9.cpp
#include
using namespace std;
#include "BSTree.cpp"
#include "config.h"
void print_help();
//--------------------------------------------------------------------
// Declaration for the binary search tree data item class
//--------------------------------------------------------------------
class TestData
{
public:
void setKey ( int newKey )
{ keyField = newKey; } // Set the key
int getKey () const
{ return keyField; } // Returns the key
private:
int keyField; // Key for the data item
};
int main()
{
BSTree testTree; // Test binary search tree
TestData testData; // Binary search tree data item
int inputKey; // User input key
char cmd; // Input command
print_help();
do
{
testTree.showStructure(); // Output tree
cout << endl << "Command: "; // Read command
cin >> cmd;
if ( cmd == '+' || cmd == '?' ||
cmd == '-' || cmd == '<' )
cin >> inputKey;
switch ( cmd )
{
case 'P' : case 'p' :
print_help();
break;
case '+' : // insert
testData.setKey(inputKey);
cout << "Insert : key = " << testData.getKey()
<< endl;
testTree.insert(testData);
break;
case '?' : // retrieve
if ( testTree.retrieve(inputKey,testData) )
cout << "Retrieved : getKey = "
<< testData.getKey() << endl;
else
cout << "Not found" << endl;
break;
case '-' : // remove
if ( testTree.remove(inputKey) )
cout << "Removed data item" << endl;
else
cout << "Not found" << endl;
break;
case 'K' : case 'k' : // writeKeys
cout << "Keys:" << endl;
testTree.writeKeys();
break;
case 'C' : case 'c' : // clear
cout << "Clear the tree" << endl;
testTree.clear();
break;
case 'E' : case 'e' : // empty
if ( testTree.isEmpty() )
cout << "Tree is empty" << endl;
else
cout << "Tree is NOT empty" << endl;
break;
#if LAB9_TEST1
case 'G' : case 'g' : // Programming Exercise 2
cout << "Tree nodes count = " << testTree.getCount() << endl;
break;
#endif // LAB9_TEST1
#if LAB9_TEST2
case 'H' : case 'h' : // Programming Exercise 2
cout << "Tree height = " << testTree.getHeight() << endl;
break;
#endif // LAB9_TEST2
#if LAB9_TEST3
case '<' : // Programming Exercise 3
cout << "Keys < " << inputKey << " : " << endl;
testTree.writeLessThan(inputKey);
cout << endl;
break;
#endif // LAB9_TEST3
case 'Q' : case 'q' : // Quit test program
break;
default : // Invalid command
cout << "Inactive or invalid command. 'P' prints help." << endl;
}
}
while ( cin && ( cmd != 'Q' ) && ( cmd != 'q' ) );
if ( !cin ) {
cerr << "Error in console input. Exiting." << endl;
}
return 0;
}
//--------------------------------------------------------------------
void print_help() {
cout << endl << "Commands:" << endl;
cout << " P : [P]rint Help (displays this message)" << endl;
cout << " +key : Insert (or update) data item (use integers)" << endl;
cout << " ?key : Retrieve data item" << endl;
cout << " -key : Remove data item" << endl;
cout << " K : Write keys in ascending order" << endl;
cout << " C : Clear the tree" << endl;
cout << " E : Empty tree?" << endl;
cout << " G : Get count of nodes "
#if LAB9_TEST1
<< "(Active : "
#else
<< "(Inactive : "
#endif
<< "In-lab Exercise 2)" << endl;
cout << " H : Height "
#if LAB9_TEST2
<< "(Active : "
#else
<< "(Inactive : "
#endif
<< "In-lab Exercise 2)" << endl;
cout << "
#if LAB9_TEST3
<< "(Active : "
#else
<< "(Inactive : "
#endif
<< "In-lab Exercise 3)" << endl;
cout << " Q : Quit the test program" << endl;
cout << endl;
}
Step by Step Solution
There are 3 Steps involved in it
Step: 1
Get Instant Access to Expert-Tailored Solutions
See step-by-step solutions with expert insights and AI powered tools for academic success
Step: 2
Step: 3
Ace Your Homework with AI
Get the answers you need in no time with our AI-driven, step-by-step assistance
Get Started