Answered step by step
Verified Expert Solution
Question
1 Approved Answer
Code needs to be fixed.I am not getting any plots and despite the changes, I keep getting the same type of errors. Publish the entire
Code needs to be fixed.I am not getting any plots and despite the changes, I keep getting the same type of errors. Publish the entire edited code once ensuring the code actually runs and there are plots. Here is the code: import numpy as np
from scipy.linalg import solve, cholesky
from scipy.optimize import minimize
from skopt import gpminimize
import matplotlib.pyplot as plt
def gaussianrbfx xprime, beta:
return npexpbeta nplinalg.normx xprime
def constructinterpolationmatrixnodes beta:
N lennodes
K npzerosN N
for i in rangeN:
for j in rangeN:
Ki j gaussianrbfnodesi nodesj beta
return K
def conditioninganalysisN m beta:
nodes nplinspace N
K constructinterpolationmatrixnodes beta
selectedindices nprandom.choiceN m replaceFalse
selectednodes nodesselectedindices
conditionfull nplinalg.condK
conditionpartial nplinalg.condKselectedindices: selectedindices
return conditionfull, conditionpartial
def objectivefunctionx:
xscalar npatleastdx
return floatxscalar npsin xscalar # Ensure a scalar value is returned
def gradienthessianx:
dfdx x npexp x x x npexp x
dfdx npexp x x x npexp x x npexp x
return dfdx dfdx
def optimizewithnewtoninitialguess, maxiter:
xopt initialguess
for in rangemaxiter:
dfdx dfdx gradienthessianxopt
xopt xopt dfdx dfdx
return xopt
def gaussianprocessoptimizationinitialpoints, objectivefunction, bounds, niter:
def objectivefunctiongpX:
return floatobjectivefunctionx for x in X # Ensure a list of scalars is returned
result gpminimizeobjectivefunctiongp bounds, acqfuncLCB ncallsniter randomstate xinitialpoints
return result.x
# Task : Analyze conditioning
N
m
beta
conditionfull, conditionpartial conditioninganalysisN m beta
printfConditioning for full matrix: conditionfull
printfConditioning for partial matrix: conditionpartial
# Task : Optimize with Newton's method
initialguessnewton
xoptnewton optimizewithnewtoninitialguessnewton
printfOptimal solution with Newton's method: xoptnewton
# Task : Gaussian process optimization
initialpointsgp # Example initial points
boundsgp
xoptgp gaussianprocessoptimizationinitialpointsgp objectivefunction, boundsgp niter # Set niter to or higher
printfOptimal solution with Gaussian process optimization: xoptgp
# Task : Compare methods
xvalues nplinspace
ytrue objectivefunctionxvalues
pltplotxvalues, ytrue, label"True Function"
pltscatterxoptnewton, objectivefunctionxoptnewton color"red", label"Newton's Method"
pltscatterxoptgp objectivefunctionxoptgp color"green", label"Gaussian Process"
pltlegend
pltxlabelx
pltylabelfx
plttitleComparison of Optimization Methods"
pltshow
Step by Step Solution
There are 3 Steps involved in it
Step: 1
Get Instant Access to Expert-Tailored Solutions
See step-by-step solutions with expert insights and AI powered tools for academic success
Step: 2
Step: 3
Ace Your Homework with AI
Get the answers you need in no time with our AI-driven, step-by-step assistance
Get Started