Answered step by step
Verified Expert Solution
Link Copied!

Question

1 Approved Answer

Code needs to be fixed.I am not getting any plots and despite the changes, I keep getting the same type of errors. Publish the entire

Code needs to be fixed.I am not getting any plots and despite the changes, I keep getting the same type of errors. Publish the entire edited code once ensuring the code actually runs and there are plots. Here is the code: import numpy as np
from scipy.linalg import solve, cholesky
from scipy.optimize import minimize
from skopt import gp_minimize
import matplotlib.pyplot as plt
def gaussian_rbf(x, x_prime, beta):
return np.exp(-beta * np.linalg.norm(x - x_prime)**2)
def construct_interpolation_matrix(nodes, beta):
N = len(nodes)
K = np.zeros((N, N))
for i in range(N):
for j in range(N):
K[i, j]= gaussian_rbf(nodes[i], nodes[j], beta)
return K
def conditioning_analysis(N, m, beta):
nodes = np.linspace(0,1, N)
K = construct_interpolation_matrix(nodes, beta)
selected_indices = np.random.choice(N, m, replace=False)
selected_nodes = nodes[selected_indices]
condition_full = np.linalg.cond(K)
condition_partial = np.linalg.cond(K[selected_indices][:, selected_indices])
return condition_full, condition_partial
def objective_function(x):
x_scalar = np.atleast_1d(x)[0]
return -float(x_scalar**2+ np.sin(5* x_scalar)) # Ensure a scalar value is returned
def gradient_hessian(x):
df_dx =2* x * np.exp(-(1- x)**2)-4* x *(1- x)* np.exp(-(1- x)**2)
d2f_dx2=-2* np.exp(-(1- x)**2)+4* x *(1- x)* np.exp(-(1- x)**2)-4*(1- x)* np.exp(-(1- x)**2)
return df_dx, d2f_dx2
def optimize_with_newton(initial_guess, max_iter=10):
x_opt = initial_guess
for _ in range(max_iter):
df_dx, d2f_dx2= gradient_hessian(x_opt)
x_opt = x_opt - df_dx / d2f_dx2
return x_opt
def gaussian_process_optimization(initial_points, objective_function, bounds, n_iter=10):
def objective_function_gp(X):
return [-float(objective_function(x)) for x in X] # Ensure a list of scalars is returned
result = gp_minimize(objective_function_gp, bounds, acq_func="LCB", n_calls=n_iter +1, random_state=42, x0=initial_points)
return result.x[0]
# Task 1: Analyze conditioning
N =10
m =5
beta =1.0
condition_full, condition_partial = conditioning_analysis(N, m, beta)
print(f"Conditioning for full matrix: {condition_full}")
print(f"Conditioning for partial matrix: {condition_partial}")
# Task 2: Optimize with Newton's method
initial_guess_newton =0.5
x_opt_newton = optimize_with_newton(initial_guess_newton)
print(f"Optimal solution with Newton's method: {x_opt_newton}")
# Task 3: Gaussian process optimization
initial_points_gp =[[0.2],[0.5],[0.8]] # Example initial points
bounds_gp =[(0.0,1.0)]
x_opt_gp = gaussian_process_optimization(initial_points_gp, objective_function, bounds_gp, n_iter=13) # Set n_iter to 13 or higher
print(f"Optimal solution with Gaussian process optimization: {x_opt_gp}")
# Task 4: Compare methods
x_values = np.linspace(0,1,1000)
y_true = objective_function(x_values)
plt.plot(x_values, y_true, label="True Function")
plt.scatter(x_opt_newton, objective_function(x_opt_newton), color="red", label="Newton's Method")
plt.scatter(x_opt_gp, objective_function(x_opt_gp), color="green", label="Gaussian Process")
plt.legend()
plt.xlabel("x")
plt.ylabel("f(x)")
plt.title("Comparison of Optimization Methods")
plt.show()

Step by Step Solution

There are 3 Steps involved in it

Step: 1

blur-text-image

Get Instant Access to Expert-Tailored Solutions

See step-by-step solutions with expert insights and AI powered tools for academic success

Step: 2

blur-text-image

Step: 3

blur-text-image

Ace Your Homework with AI

Get the answers you need in no time with our AI-driven, step-by-step assistance

Get Started

Recommended Textbook for

The Database Experts Guide To SQL

Authors: Frank Lusardi

1st Edition

0070390029, 978-0070390027

More Books

Students also viewed these Databases questions