Answered step by step
Verified Expert Solution
Question
1 Approved Answer
Consider a ket space spanned by the eigen kets {|a_i}of a Hermitian operator A, i.e., A|ai= a_i | a_i. There is no degeneracy. Now take
Consider a ket space spanned by the eigen kets {|a_i}of a Hermitian operator A, i.e., A|ai= a_i | a_i. There is no degeneracy.
Now take A = a + b where a is a real number, b is a real vector (a, b are not operators), and is a vector operator whose Cartesian components are Pauli matrices x, y, and z.
Need to Prove:
f(a + b ) = 1/2 { f(a + b) + f(a b) + [f(a + b) f(a b)] b /b}
where b = |b| and f some function.
Step by Step Solution
There are 3 Steps involved in it
Step: 1
Get Instant Access to Expert-Tailored Solutions
See step-by-step solutions with expert insights and AI powered tools for academic success
Step: 2
Step: 3
Ace Your Homework with AI
Get the answers you need in no time with our AI-driven, step-by-step assistance
Get Started