Answered step by step
Verified Expert Solution
Question
1 Approved Answer
Consider the Arrow's portfolio model with one risky asset and one risk-free asset. The von Newmann-Morgenstern utility functions of an investor is: u(w) = (w)1/2,
Consider the Arrow's portfolio model with one risky asset and one risk-free asset. The von Newmann-Morgenstern utility functions of an investor is: u(w) = (w)1/2, where w represents wealth. Let the initial wealth be $10,000, the interest rate of the risk-free asset 5%, and the probability distribution of the return of the risky asset X = (1%, 10%; 0.55, 0.45). 2.1 Consider two portfolios. Portfolio 1 (P1) consists in investing $3,000 in the risky asset, and in portfolio 2 (P2) the investment in the risky asset is $4,000. Find the probability distribution of each portfolio, calculate the expected utility of each, and then tell what the preferred portfolio to the investor is. 2.2 Find the portfolio that maximizes the expected utility of the investor 2.3 What would be your prediction about the optimal (in the sense that maximizes the expected utility) amount invested in the risky asset if the wealth of the investor goes up? Justify your prediction. 2.4 What would be your prediction about the optimal (in the sense that maximizes the expected utility) amount invested in the risky asset if the distribution of the random return is now 1 = (1%, 10%; 0.547, 0.453)? Justify your prediction Consider the Arrow's portfolio model with one risky asset and one risk-free asset. The von Newmann-Morgenstern utility functions of an investor is: u(w) = (w)1/2, where w represents wealth. Let the initial wealth be $10,000, the interest rate of the risk-free asset 5%, and the probability distribution of the return of the risky asset X = (1%, 10%; 0.55, 0.45). 2.1 Consider two portfolios. Portfolio 1 (P1) consists in investing $3,000 in the risky asset, and in portfolio 2 (P2) the investment in the risky asset is $4,000. Find the probability distribution of each portfolio, calculate the expected utility of each, and then tell what the preferred portfolio to the investor is. 2.2 Find the portfolio that maximizes the expected utility of the investor 2.3 What would be your prediction about the optimal (in the sense that maximizes the expected utility) amount invested in the risky asset if the wealth of the investor goes up? Justify your prediction. 2.4 What would be your prediction about the optimal (in the sense that maximizes the expected utility) amount invested in the risky asset if the distribution of the random return is now 1 = (1%, 10%; 0.547, 0.453)? Justify your prediction
Step by Step Solution
There are 3 Steps involved in it
Step: 1
Get Instant Access to Expert-Tailored Solutions
See step-by-step solutions with expert insights and AI powered tools for academic success
Step: 2
Step: 3
Ace Your Homework with AI
Get the answers you need in no time with our AI-driven, step-by-step assistance
Get Started