Answered step by step
Verified Expert Solution
Link Copied!

Question

1 Approved Answer

Consider the Arrow's portfolio model with one risky asset and one risk-free asset. The von Newmann-Morgenstern utility functions of an investor is: u(w) = (w)1/2,

image text in transcribed

Consider the Arrow's portfolio model with one risky asset and one risk-free asset. The von Newmann-Morgenstern utility functions of an investor is: u(w) = (w)1/2, where w represents wealth. Let the initial wealth be $10,000, the interest rate of the risk-free asset 5%, and the probability distribution of the return of the risky asset X = (1%, 10%; 0.55, 0.45). 2.1 Consider two portfolios. Portfolio 1 (P1) consists in investing $3,000 in the risky asset, and in portfolio 2 (P2) the investment in the risky asset is $4,000. Find the probability distribution of each portfolio, calculate the expected utility of each, and then tell what the preferred portfolio to the investor is. 2.2 Find the portfolio that maximizes the expected utility of the investor 2.3 What would be your prediction about the optimal (in the sense that maximizes the expected utility) amount invested in the risky asset if the wealth of the investor goes up? Justify your prediction. 2.4 What would be your prediction about the optimal (in the sense that maximizes the expected utility) amount invested in the risky asset if the distribution of the random return is now 1 = (1%, 10%; 0.547, 0.453)? Justify your prediction Consider the Arrow's portfolio model with one risky asset and one risk-free asset. The von Newmann-Morgenstern utility functions of an investor is: u(w) = (w)1/2, where w represents wealth. Let the initial wealth be $10,000, the interest rate of the risk-free asset 5%, and the probability distribution of the return of the risky asset X = (1%, 10%; 0.55, 0.45). 2.1 Consider two portfolios. Portfolio 1 (P1) consists in investing $3,000 in the risky asset, and in portfolio 2 (P2) the investment in the risky asset is $4,000. Find the probability distribution of each portfolio, calculate the expected utility of each, and then tell what the preferred portfolio to the investor is. 2.2 Find the portfolio that maximizes the expected utility of the investor 2.3 What would be your prediction about the optimal (in the sense that maximizes the expected utility) amount invested in the risky asset if the wealth of the investor goes up? Justify your prediction. 2.4 What would be your prediction about the optimal (in the sense that maximizes the expected utility) amount invested in the risky asset if the distribution of the random return is now 1 = (1%, 10%; 0.547, 0.453)? Justify your prediction

Step by Step Solution

There are 3 Steps involved in it

Step: 1

blur-text-image

Get Instant Access to Expert-Tailored Solutions

See step-by-step solutions with expert insights and AI powered tools for academic success

Step: 2

blur-text-image_2

Step: 3

blur-text-image_3

Ace Your Homework with AI

Get the answers you need in no time with our AI-driven, step-by-step assistance

Get Started

Recommended Textbook for

Investments

Authors: Zvi Bodie, Alex Kane, Alan J. Marcus

7th Edition

007331465X, 978-0073314655

More Books

Students also viewed these Finance questions

Question

How do patients across cultures prefer to make medical decisions?

Answered: 1 week ago